1887

Abstract

An anaerobic, thermophilic, spore-forming bacterium (strain 64-FGQ) was isolated from a terrestrial hydrothermal spring from the Kamchatka peninsula, Russia. This strain utilized lactate as an electron donor, insoluble poorly crystalline Fe(III) oxide incorporated into alginate beads as a potential electron acceptor and 9,10-anthraquinone-2,6-disulfonate (AQDS) as an electron-shuttling compound. Vegetative cells of strain 64-FGQ were Gram-stain-positive, peritrichously flagellated, motile, straight rods, 0.3–0.5 µm in diameter and 2.0–5.0 µm long, growing singly or forming short chains. Cells formed round refractive endospores in terminal swollen sporangia. The temperature range for growth was 46–70 °C, with an optimum at 65 °C. The pH range for growth was 5.5–8.5, with an optimum at pH 7.0. The substrates utilized by strain 64-FGQ in the presence of AQDS as an electron acceptor included lactate, malate, succinate, glycerol and yeast extract. The strain fermented galactose, fructose, maltose, sucrose, pyruvate and peptone. Strain 64-FGQ used AQDS, humic acid, thiosulfate, nitrate and perchlorate as electron acceptors for growth. Fe(III) was not directly reduced, but strain 64-FGQ was able to grow and reduce Fe(III) oxide in the presence of small amounts of AQDS or humic acid as electron-shuttling compounds. The G+C content of the DNA of strain 64-FGQ was 51 mol%. 16S rRNA gene sequence analysis placed the isolate in the genus , with the type strain of as its closest relative (97.2 % similarity). Based on phylogenetic analysis and physiological characteristics, strain 64-FGQ is considered to represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is 64-FGQ ( = DSM 23265 = VKM B-2603).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029009-0
2012-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/613.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029009-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Balk M. , Weijma J. , Friedrich M. W. , Stams A. J. M. . ( 2003; ). Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor. . Arch Microbiol 179:, 315–320.[PubMed]
    [Google Scholar]
  3. Benson D. A. , Boguski M. S. , Lipman D. J. , Ostell J. , Ouellette B. F. , Rapp B. A. , Wheeler D. L. . ( 1999; ). GenBank. . Nucleic Acids Res 27:, 12–17. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fontaine F. E. , Peterson W. H. , McCoy E. , Johnson M. J. , Ritter G. J. . ( 1942; ). A new type of glucose fermentation by Clostridium thermoaceticum . . J Bacteriol 43:, 701–715.[PubMed]
    [Google Scholar]
  6. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  7. Kappler A. , Benz M. , Schink B. , Brune A. . ( 2004; ). Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. . FEMS Microbiol Ecol 47:, 85–92. [CrossRef] [PubMed]
    [Google Scholar]
  8. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  9. Lovley D. R. , Coates J. D. , Blunt-Harris E. L. , Phillips E. J. P. , Woodward J. C. . ( 1996; ). Humic substances as electron acceptors for microbial respiration. . Nature 382:, 445–448. [CrossRef]
    [Google Scholar]
  10. Lovley D. R. , Kashefi K. , Vargas M. , Tor J. M. , Blunt-Harris E. L. . ( 2000; ). Reduction of humic substances and Fe(III) by hyperthermophilic micro-organisms. . Chem Geol 169:, 289–298. [CrossRef]
    [Google Scholar]
  11. Lovley D. R. , Holmes D. E. , Nevin K. P. . ( 2004; ). Dissimilatory Fe(III) and Mn(IV) reduction. . Adv Microb Physiol 49:, 219–286. [CrossRef] [PubMed]
    [Google Scholar]
  12. Nevin K. P. , Lovley D. R. . ( 2000; ). Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens . . Appl Environ Microbiol 66:, 2248–2251. [CrossRef] [PubMed]
    [Google Scholar]
  13. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  14. Slobodkin A. I. . ( 2005; ). Thermophilic microbial metal reduction. . Microbiology (English translation of Mikrobiologiia) 74:, 501–514.[PubMed] [CrossRef]
    [Google Scholar]
  15. Slobodkin A. I. , Reysenbach A.-L. , Strutz N. , Dreier M. , Wiegel J. . ( 1997a; ). Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. . Int J Syst Bacteriol 47:, 541–547. [CrossRef] [PubMed]
    [Google Scholar]
  16. Slobodkin A. , Reysenbach A. L. , Mayer F. , Wiegel J. . ( 1997b; ). Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov.. Int J Syst Bacteriol 47:, 969–974. [CrossRef] [PubMed]
    [Google Scholar]
  17. Slobodkin A. I. , Tourova T. P. , Kuznetsov B. B. , Kostrikina N. A. , Chernyh N. A. , Bonch-Osmolovskaya E. A. . ( 1999; ). Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. . Int J Syst Bacteriol 49:, 1471–1478. [CrossRef] [PubMed]
    [Google Scholar]
  18. Slobodkina G. B. , Kolganova T. V. , Querellou J. , Bonch-Osmolovskaya E. A. , Slobodkin A. I. . ( 2009; ). Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 59:, 2880–2883. [CrossRef] [PubMed]
    [Google Scholar]
  19. Tamura K. , Nei M. , Kumar S. . ( 2004; ). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef] [PubMed]
    [Google Scholar]
  20. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  21. Wiegel J. , Braun M. , Gottschalk G. . ( 1981; ). Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. . Curr Microbiol 5:, 255–260. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029009-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029009-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error