1887

Abstract

The gene was evaluated as an alternative molecular marker for the differentiation of species and in order to understand better the phylogenetic relationships within the genus. PCR-RFLP experiments using III allowed differentiation of species, particularly those that affect the same plant host such as and , pathogenic to sugar cane, and , which cause disease in melon, and , and / , pathogenic to tomato. Phylogenetic relationships within the genus were also examined by comparing partial gene sequences (612 nt) and the species were separated into two main groups. Group I, well supported by bootstrap values of 99 %, comprised , , , , , , , , , , , , , , , , , , , and Group II, again well supported by bootstrap values of 99 %, comprised , , , and . The gene sequence similarity observed among the species in this study ranged from 87.8 to 99.7 %. The results of PCR-RFLP of the gene indicated that this technique can be used for diagnosis and identification of most strains, including closely related species within the genus. However, species that showed identical profiles could be differentiated clearly only by sequence analysis. The results obtained in our phylogenetic analysis suggested that the gene can be used as an alternative molecular marker for genetic relatedness in the genus . The results of PCR-RFLP of the gene indicate that this technique can be used for diagnosis and identification of closely related species within the genus, representing a rapid and inexpensive tool that can be easily standardized between laboratories.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028977-0
2012-06-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1419.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028977-0&mimeType=html&fmt=ahah

References

  1. Adékambi T. , Shinnick T. M. , Raoult D. , Drancourt M. . ( 2008; ). Complete rpoB gene sequencing as a suitable supplement to DNA–DNA hybridization for bacterial species and genus delineation. . Int J Syst Evol Microbiol 58:, 1807–1814. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ah-You N. , Gagnevin L. , Grimont P. A. D. , Brisse S. , Nesme X. , Chiroleu F. , Bui Thi Ngoc L. , Jouen E. , Lefeuvre P. . & other authors ( 2009; ). Polyphasic characterization of xanthomonads pathogenic to members of the Anacardiaceae and their relatedness to species of Xanthomonas . . Int J Syst Evol Microbiol 59:, 306–318. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ait Tayeb L. , Ageron E. , Grimont F. , Grimont P. A. D. . ( 2005; ). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. . Res Microbiol 156:, 763–773. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ait Tayeb L. , Lefevre M. , Passet V. , Diancourt L. , Brisse S. , Grimont P. A. D. . ( 2008; ). Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences. . Res Microbiol 159:, 169–177. [CrossRef] [PubMed]
    [Google Scholar]
  5. Berthier Y. , Verdier V. , Guesdon J. L. , Chevrier D. , Denis J. B. , Decoux G. , Lemattre M. . ( 1993; ). Characterization of Xanthomonas campestris pathovars by rRNA gene restriction patterns. . Appl Environ Microbiol 59:, 851–859.[PubMed]
    [Google Scholar]
  6. Bikandi J. , San Millán R. , Rementeria A. , Garaizar J. . ( 2004; ). In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. . Bioinformatics 20:, 798–799. [CrossRef] [PubMed]
    [Google Scholar]
  7. Blackwood K. S. , Turenne C. Y. , Harmsen D. , Kabani A. M. . ( 2004; ). Reassessment of sequence-based targets for identification of Bacillus species. . J Clin Microbiol 42:, 1626–1630. [CrossRef] [PubMed]
    [Google Scholar]
  8. da Mota F. F. , Gomes E. A. , Paiva E. , Seldin L. . ( 2005; ). Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method. . FEMS Microbiol Ecol 53:, 317–328. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dahllöf I. , Baillie H. , Kjelleberg S. . ( 2000; ). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. . Appl Environ Microbiol 66:, 3376–3380. [CrossRef] [PubMed]
    [Google Scholar]
  10. Drancourt M. , Raoult D. . ( 2002; ). rpoB gene sequence-based identification of Staphylococcus species. . J Clin Microbiol 40:, 1333–1338. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gonçalves E. R. , Rosato Y. B. . ( 2002; ). Phylogenetic analysis of Xanthomonas species based upon 16S–23S rDNA intergenic spacer sequences. . Int J Syst Evol Microbiol 52:, 355–361.[PubMed]
    [Google Scholar]
  12. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  13. Hauben L. , Vauterin L. , Swings J. , Moore E. R. B. . ( 1997; ). Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. . Int J Syst Bacteriol 47:, 328–335. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jin D. J. , Gross C. A. . ( 1989; ). Three rpoBC mutations that suppress the termination defects of rho mutants also affect the functions of nusA mutants. . Mol Gen Genet 216:, 269–275. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ko K. S. , Lee H. K. , Park M.-Y. , Lee K.-H. , Yun Y.-J. , Woo S.-Y. , Miyamoto H. , Kook Y.-H. . ( 2002; ). Application of RNA polymerase β-subunit gene (rpoB) sequences for the molecular differentiation of Legionella species. . J Clin Microbiol 40:, 2653–2658. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ko K. S. , Hong S.-K. , Lee K.-H. , Lee H.-K. , Park M.-Y. , Miyamoto H. , Kook Y.-H. . ( 2003; ). Detection and identification of Legionella pneumophila by PCR-restriction fragment length polymorphism analysis of the RNA polymerase gene (rpoB). . J Microbiol Methods 54:, 325–337. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kwon H.-J. , Park K.-Y. , Kim S.-J. , Yoo H.-S. . ( 2001; ). Application of nucleotide sequence of RNA polymerase β-subunit gene (rpoB) to molecular differentiation of serovars of Salmonella enterica subsp. enterica . . Vet Microbiol 82:, 121–129. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lee S.-H. , Kim B.-J. , Kim J.-H. , Park K.-H. , Kim S.-J. , Kook Y.-H. . ( 2000; ). Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene (rpoB) sequences. . J Clin Microbiol 38:, 2557–2562.[PubMed]
    [Google Scholar]
  19. Moore E. R. B. , Krüger A. S. , Hauben L. , Seal S. E. , Daniels M. J. , De Baere R. , De Wachter R. , Timmis K. N. , Swings J. . ( 1997; ). 16S rRNA gene sequence analyses and inter- and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia . . FEMS Microbiol Lett 151:, 145–153. [CrossRef] [PubMed]
    [Google Scholar]
  20. Mun H. S. , Oh E. J. , Kim H. J. , Lee K. H. , Koh Y. H. , Kim C. J. , Hyun J. W. , Kim B. J. . ( 2007; ). Differentiation of Streptomyces spp. which cause potato scab disease on the basis of partial rpoB gene sequences. . Syst Appl Microbiol 30:, 401–407. [CrossRef] [PubMed]
    [Google Scholar]
  21. Parkinson N. , Cowie C. , Heeney J. , Stead D. . ( 2009; ). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. . Int J Syst Evol Microbiol 59:, 264–274. [CrossRef] [PubMed]
    [Google Scholar]
  22. Pitcher D. G. , Saunders N. A. , Owen R. J. . ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  23. Rademaker J. L. W. , Louws F. J. , Schultz M. H. , Rossbach U. , Vauterin L. , Swings J. , de Bruijn F. J. . ( 2005; ). A comprehensive species to strain taxonomic framework for Xanthomonas . . Phytopathology 95:, 1098–1111. [CrossRef] [PubMed]
    [Google Scholar]
  24. Renesto P. , Gautheret D. , Drancourt M. , Raoult D. . ( 2000; ). Determination of the rpoB gene sequences of Bartonella henselae and Bartonella quintana for phylogenic analysis. . Res Microbiol 151:, 831–836. [CrossRef] [PubMed]
    [Google Scholar]
  25. Renesto P. , Gouvernet J. , Drancourt M. , Roux V. , Raoult D. . ( 2001; ). Use of rpoB gene analysis for detection and identification of Bartonella species. . J Clin Microbiol 39:, 430–437. [CrossRef] [PubMed]
    [Google Scholar]
  26. Rohlf F. J. . ( 1992; ). ntsys-PC Numerical Taxonomy and Multivariate Analysis System, version 1.70.. New York:: Exeter Publ;.
  27. Ryan R. P. , Vorhölter F.-J. , Potnis N. , Jones J. B. , Van Sluys M.-A. , Bogdanove A. J. , Dow J. M. . ( 2011; ). Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. . Nat Rev Microbiol 9:, 344–355. [CrossRef] [PubMed]
    [Google Scholar]
  28. Simões T. H. N. , Gonçalves E. R. , Rosato Y. B. , Mehta A. . ( 2007; ). Differentiation of Xanthomonas species by PCR-RFLP of rpfB and atpD genes. . FEMS Microbiol Lett 271:, 33–39. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  30. Van den Mooter M. , Swings J. . ( 1990; ). Numerical analysis of 295 phenotypic features from 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. . Int J Syst Bacteriol 40:, 348–369. [CrossRef] [PubMed]
    [Google Scholar]
  31. Vauterin L. , Swings J. , Kersters K. . ( 1991; ). Grouping of Xanthomonas campestris pathovars by SDS-PAGE of proteins. . J Gen Microbiol 137:, 1677–1687.[CrossRef]
    [Google Scholar]
  32. Vauterin L. , Yang P. , Hoste B. , Pot B. , Swings J. , Kersters K. . ( 1992; ). Taxonomy of xanthomonads from cereals and grasses based on SDS-PAGE of proteins, fatty acid analysis and DNA hybridization. . J Gen Microbiol 138:, 1467–1477.[CrossRef]
    [Google Scholar]
  33. Vauterin L. , Hoste B. , Kersters K. , Swings J. . ( 1995; ). Reclassification of Xanthomonas . . Int J Syst Bacteriol 45:, 472–489. [CrossRef]
    [Google Scholar]
  34. Yang P. , Vauterin L. , Vancanneyt M. , Swings J. , Kersters K. . ( 1993; ). Application of fatty acid methyl esters for the taxonomic analysis of genus Xanthomonas . . Syst Appl Microbiol 16:, 47–71. [CrossRef]
    [Google Scholar]
  35. Young J. M. , Park D.-C. , Shearman H. M. , Fargier E. . ( 2008; ). A multilocus sequence analysis of the genus Xanthomonas . . Syst Appl Microbiol 31:, 366–377. [CrossRef] [PubMed]
    [Google Scholar]
  36. Young J. M. , Wilkie J. P. , Park D. C. , Watson D. R. W. . ( 2010; ). New Zealand strains of plant pathogenic bacteria classified by multi-locus sequence analysis; proposal of Xanthomonas dyei sp. nov.. Plant Pathol 59:, 270–281. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028977-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028977-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error