1887

Abstract

A Gram-positive, strictly aerobic, rod-shaped, non-motile bacterial strain, designated MJ28, was isolated from a sludge sample from the Daejeon sewage disposal plant in South Korea. A polyphasic approach was applied to study the taxonomic position of strain MJ28. Strain MJ28 showed highest 16S rRNA gene sequence similarity to KP02 (95.2 %). Levels of 16S rRNA gene sequence similarity to the type strains of other species were less than 94.0 %. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MJ28 belonged to the clade formed by members of the genus in the family . The G+C content of the genomic DNA of strain MJ28 was 65.8 mol%. The chemotaxonomic characteristics of strain MJ28 showed features typical of the genus , with MK-9 as the predominant respiratory quinone, 2,4-diaminobutryic acid as the diamino acid in the peptidoglycan, and anteiso-C (44.6 %), anteiso-C (35.7 %) and C (9.5 %) as the major fatty acids. On the basis of phylogenetic inference, fatty acid profile and other phenotypic properties, strain MJ28 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MJ28 ( = KCTC 19773 = JCM 16921).

Funding
This study was supported by the:
  • , Korea Ministry of Environment , (Award 173-101-034)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028951-0
2012-04-01
2021-02-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/786.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028951-0&mimeType=html&fmt=ahah

References

  1. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  2. Cappuccino J. G., Sherman N. 2002 Microbiology: a Laboratory Manual, 6th edn. San Francisco: Benjamin Cummings;
    [Google Scholar]
  3. Cho S. L., Jung M. Y., Park M. H., Chang Y. H., Yoon J. H., Myung S. C., Kim W. 2010; Pseudoclavibacter chungangensis sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 60:1672–1677 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  6. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  7. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  8. Kim M. K., Jung H. Y. 2009; Pseudoclavibacter soli sp. nov., a β-glucosidase-producing bacterium. Int J Syst Evol Microbiol 59:835–838 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria . J Microbiol 43:152–157[PubMed]
    [Google Scholar]
  10. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  11. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef][PubMed]
    [Google Scholar]
  12. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  13. Manaia C. M., Nogales B., Weiss N., Nunes O. C. 2004; Gulosibacter molinativorax gen. nov., sp. nov., a molinate-degrading bacterium, and classification of ‘Brevibacterium helvolum’ DSM 20419 as Pseudoclavibacter helvolus gen. nov., sp. nov.. Int J Syst Evol Microbiol 54:783–789 [CrossRef][PubMed]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  17. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  18. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028951-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028951-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error