1887

Abstract

Phenotypic and genotypic studies revealed new tools for differentiating genomovar VI from and other -complex species. Hence, the name sp. nov. is proposed, with LMG 18943 (=CCUG 47727) as the type strain. can be differentiated from other -complex bacteria by its inability to assimilate tryptamine, azelaic acid and salicin and by its failure to grow on the -selective medium PCAT. Both 16S rDNA and RFLP analysis revealed unique restriction patterns. In addition, new 16S rDNA- and -based PCR assays allowed its specific identification.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02888-0
2004-05-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540689.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02888-0&mimeType=html&fmt=ahah

References

  1. Burbage D. A., Sasser M. 1982; A medium selective for Pseudomonas cepacia . Phytopathology 76:706
    [Google Scholar]
  2. Coenye T., LiPuma J. J., Henry D., Hoste B., Vandemeulebroecke K., Gillis M., Speert D. P., Vandamme P. 2001a; Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int J Syst Evol Microbiol 51:271–279
    [Google Scholar]
  3. Coenye T., Mahenthiralingam E., Henry D., LiPuma J. J., Laevens S., Gillis M., Speert D. P., Vandamme P. 2001b; Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51:1481–1490
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Henry D., Campbell M., LiPuma J., Speert D. 1997; Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol 35:614–619
    [Google Scholar]
  6. LiPuma J. J., Spliker T., Gill L. H., Campbell P. W. III, Liu L., Mahenthiralingam E. 2001; Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164:92–96 [CrossRef]
    [Google Scholar]
  7. Mahenthiralingam E., Bischof J., Byrne S. K., Radomski C., Davies J. E., Av-Gay Y., Vandamme P. 2000; DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis , Burkholderia multivorans , Burkholderia stabilis , and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38:3165–3173
    [Google Scholar]
  8. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  9. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  10. Ségonds C., Heulin T., Marty N., Chabanon G. 1999; Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J Clin Microbiol 37:2201–2208
    [Google Scholar]
  11. Vandamme P., Holmes B., Vancanneyt M. 8 other authors 1997; Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200 [CrossRef]
    [Google Scholar]
  12. Vandamme P., Mahenthiralingam E., Holmes B., Coenye T., Hoste B., De Vos P., Henry D., Speert D. P. 2000; Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol 38:1042–1047
    [Google Scholar]
  13. Vandamme P., Henry D., Coenye T., Nzula S., Vancanneyt M., LiPuma J. J., Speert D. P., Govan J. R. W., Mahenthiralingam E. 2002; Burkholderia anthina sp. nov. and Burkholderia pyrrocinia , two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 33:143–149 [CrossRef]
    [Google Scholar]
  14. Vandamme P., Holmes B., Coenye T., Goris J., Mahenthiralingam E., LiPuma J. J., Govan J. R. W. 2003; Burkholderia cenocepacia sp. nov. – a new twist to an old story. Res Microbiol 154:91–96 [CrossRef]
    [Google Scholar]
  15. Vermis K., Coenye T., Mahenthiralingam E., Nelis H. J., Vandamme P. 2002a; Evaluation of species-specific recA -based PCR tests for genomovar level identification within the Burkholderia cepacia complex. J Med Microbiol 51:937–940
    [Google Scholar]
  16. Vermis K., Vandekerckhove C., Nelis H. J., Vandamme P. A. R. 2002b; Evaluation of restriction fragment length polymorphism analysis of 16S rDNA as a tool for genomovar characterisation within the Burkholderia cepacia complex. FEMS Microbiol Lett 214:1–5 [CrossRef]
    [Google Scholar]
  17. Vermis K., Vandamme P., Nelis H. J. 2003; Burkholderia cepacia complex genomovars: utilization of carbon sources, susceptibility to antimicrobial agents and growth on selective media. J Appl Microbiol 95:1191–1199 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02888-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02888-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error