sp. nov. and sp. nov., isolated from the human oral cavity Free

Abstract

Two bacterial strains, EHS11 and EPSA11, which were isolated from the human oral cavity, were characterized in terms of phenotypic and biochemical characteristics, cellular fatty acid profiles and phylogenetic position based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that each of the isolates belonged to a novel species of the genus . Strain EHS11 was related to (about 95 % similarity), whereas strain EPSA11 was related to (about 94 % similarity). Both strains were obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative rods. The cellular fatty acid composition of strain EPSA11 was very similar to that of JCM 8540. On the other hand, the cellular fatty acid composition of strain EHS11 was significantly different from those of other species. The predominant fatty acids in strain EHS11 are C 9, C and C 3-OH, whereas other species, except for JCM 8530, possess anteiso-C, iso-C 3-OH and C 9. The predominant fatty acids in JCM 8530 are anteiso-C, C and C 9. DNA–DNA hybridization experiments revealed a genomic distinction of strains EHS11 and EPSA11 from JCM 8530 and JCM 8540. On the basis of these data, two novel species are proposed: sp. nov. and sp. nov. The type strains of and are EHS11 (=JCM 12083=DSM 15611) and EPSA11 (=JCM 12084=DSM 15606), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02876-0
2004-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540877.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02876-0&mimeType=html&fmt=ahah

References

  1. Bailey G. D., Love D. N. 1995; Glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities and glucose utilization by species within the genera Bacteroides , Prevotella , and Porphyromonas . Int J Syst Bacteriol 45:246–249 [CrossRef]
    [Google Scholar]
  2. Dellinger C. A., Moore L. V. H. 1986; Use of the RapID-ANA system to screen for enzyme activities that differ among species of bile-inhibited Bacteroides . J Clin Microbiol 23:289–293
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Gharbia S. E., Shah H. N. 1991; Pathways of glutamate catabolism among Fusobacterium species. J Gen Microbiol 137:1201–1206 [CrossRef]
    [Google Scholar]
  6. Holdeman L. V., Johnson J. L. 1982; Description of Bacteroides loescheii sp. nov. and emendation of the descriptions of Bacteroides melaninogenicus (Oliver and Wherry) Roy and Kelly 1939 and Bacteroides denticola Shah and Collins 1981. Int J Syst Bacteriol 32:399–409 [CrossRef]
    [Google Scholar]
  7. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  8. Holdeman L. V., Moore W. E. C., Churn P. J., Johnson J. L. 1982; Bacteroides oris and Bacteroides buccae , new species from human periodontitis and other human infections. Int J Syst Bacteriol 32:125–131 [CrossRef]
    [Google Scholar]
  9. Holdeman L. V., Kelley R. W., Moore W. E. C. 1984; Genus I. Bacteroides Castellani and Chalmers 1919, 959AL . In Bergey's Manual of Systematic Bacteriology pp  604–631 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  10. Kazor C. E., Mitchell P. M., Lee A. M., Stokes L. N., Loesche W. J., Dewhirst F. E., Paster B. J. 2003; Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 41:558–563 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206
    [Google Scholar]
  13. Könönen E., Eerola E., Frandsen E. V. G., Jalava J., Mättö J., Salmenlinna S., Jousimies-Somer H. 1998; Phylogenetic characterization and proposal of a new pigmented species to the genus Prevotella : Prevotella pallens sp. nov. Int J Syst Bacteriol 48:47–51 [CrossRef]
    [Google Scholar]
  14. Kuykendall L. D., Roy M. A. O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  15. Laughon B. E., Syed S. A., Loesche W. J. 1982; API ZYM system for identification of Bacteroides spp., Capnocytophaga spp., and spirochetes of oral origin. J Clin Microbiol 15:97–102
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  17. Mayberry W. R., Lambe D. W. Jr, Ferguson K. P. 1982; Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32:21–27 [CrossRef]
    [Google Scholar]
  18. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  19. Miyagawa E., Azuma R., Suto T. 1979; Cellular fatty acid composition in gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25:41–51 [CrossRef]
    [Google Scholar]
  20. Moore W. E. C., Cato E. P., Moore L. V. H. 1985; Index of the bacterial and yeast nomenclatural changes published in the International Journal of Systematic Bacteriology since the 1980 Approved Lists of Bacterial Names (1 January 1980 to 1 January 1985). Int J Syst Bacteriol 35:382–407 [CrossRef]
    [Google Scholar]
  21. Moore L. V. H., Bourne D. M., Moore W. E. C. 1994; Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. Int J Syst Bacteriol 44:338–347 [CrossRef]
    [Google Scholar]
  22. Paster B. J., Boches S. K., Galvin J. L., Ericson R. E., Lau C. N., Levanos V. A., Sahasrabudhe A., Dewhirst F. E. 2001; Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783 [CrossRef]
    [Google Scholar]
  23. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002a; Reclassification of Bacteroides forsythus (Tanner et al . 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52:841–849 [CrossRef]
    [Google Scholar]
  26. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y. 2002b; Detection of novel oral phylotypes associated with periodontitis. FEMS Microbiol Lett 217:65–69 [CrossRef]
    [Google Scholar]
  27. Shah H. N. 1992; The genus Bacteroides and related taxa. In The Prokaryotes , 2nd edn. pp  3593–3607 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  28. Shah H. N., Collins M. D. 1980; Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J Appl Bacteriol 48:75–87 [CrossRef]
    [Google Scholar]
  29. Shah H. N., Collins M. D. 1983; Genus Bacteroides . A chemotaxonomical perspective. J Appl Bacteriol 55:403–416 [CrossRef]
    [Google Scholar]
  30. Shah H. N., Collins M. D. 1988; Proposal for reclassification of Bacteroides asaccharolyticus , Bacteroides gingivalis , and Bacteroides endodontalis in a new genus, Porphyromonas . Int J Syst Bacteriol 38:128–131 [CrossRef]
    [Google Scholar]
  31. Shah H. N., Collins M. D. 1989; Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39:85–87 [CrossRef]
    [Google Scholar]
  32. Shah H. N., Collins M. D. 1990; Prevotella , a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides . Int J Syst Bacteriol 40:205–208 [CrossRef]
    [Google Scholar]
  33. Slots J. 1981; Enzymatic characterization of some oral and nonoral gram-negative bacteria with the API ZYM system. J Clin Microbiol 14:288–294
    [Google Scholar]
  34. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  35. Tanner A. C. R., Strzempko M. N., Belsky C. A., McKinley G. A. 1985; API ZYM and API An-Ident reactions of fastidious oral gram-negative species. J Clin Microbiol 22:333–335
    [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  37. Willems A., Collins M. D. 1995; 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapasalo et al .) are genealogically highly related and are members of the genus Prevotella : emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov. Int J Syst Bacteriol 45:832–836 [CrossRef]
    [Google Scholar]
  38. Wu C.-C., Johnson J. L., Moore W. E. C., Moore L. V. H. 1992; Emended descriptions of Prevotella denticola , Prevotella loescheii , Prevotella veroralis , and Prevotella melaninogenica . Int J Syst Bacteriol 42:536–541 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02876-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02876-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed