1887

Abstract

A Gram-negative, aerobic, ovoid to rod-shaped bacterial strain, KME 002 was isolated from a marine ascidian, , off the coast of Gangneung, Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that this strain belonged to the family in the class and was closely related to the type strains of , and with 95.0, 94.7 and 94.5 % 16S rRNA gene sequence similarities, respectively. KME 002 was an obligately halophilic bacterium requiring 1 to 5 % (w/v) NaCl, with an absolute requirement for magnesium chloride for growth. Cells were motile by means of a single polar flagellum and showed budding fission. The predominant cellular fatty acid of the isolate was Cω7 and Q-10 was the major ubiquinone. The DNA G+C content of the strain was 71.6 mol%. The major secondary metabolites from cultures in liquid medium were cholic acid derivatives, including 3α,12α-hydroxy-3-keto-glycocholanic acid, 12-hydroxy-3-keto-glycocholanic acid, nutriacholic acid and deoxycholic acid. These characteristics determined in this polyphasic study suggest that strain KME 002 represents a novel species in a new genus of the family . The name gen. nov., sp. nov. is proposed for this isolate, and the type strain is KME 002 ( = JCM 16214 = KCCM 90082).

Funding
This study was supported by the:
  • National Fisheries Research and Development Institute (Award RP-2010-BT-001)
  • Korea Institute of Science and Technology (Award 2Z03401)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028738-0
2012-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/624.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028738-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Arahal D. R., Macián M. C., Garay E., Pujalte M. J. 2005; Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov.. Int J Syst Evol Microbiol 55:2371–2376 [View Article][PubMed]
    [Google Scholar]
  3. Bertolasi V., Bortolini O., Fantin G., Fogagnolo M., Perrone D. 2007; Preparation and characterization of some keto-bile acid azines. Steroids 72:756–764 [View Article][PubMed]
    [Google Scholar]
  4. Biebl H., Allgaier M., Tindall B. J., Koblizek M., Lünsdorf H., Pukall R., Wagner-Döbler I. 2005a; Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096 [View Article][PubMed]
    [Google Scholar]
  5. Biebl H., Allgaier M., Lünsdorf H., Pukall R., Tindall B. J., Wagner-Döbler I. 2005b; Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a . Int J Syst Evol Microbiol 55:2377–2383 [View Article][PubMed]
    [Google Scholar]
  6. Boettcher K. J., Geaghan K. K., Maloy A. P., Barber B. J. 2005; Roseovarius crassostreae sp. nov., a member of the Roseobacter clade and the apparent cause of juvenile oyster disease (JOD) in cultured Eastern oysters. Int J Syst Evol Microbiol 55:1531–1537 [View Article][PubMed]
    [Google Scholar]
  7. Brinkhoff T., Bach G., Heidorn T., Liang L., Schlingloff A., Simon M. 2004; Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565 [View Article][PubMed]
    [Google Scholar]
  8. Brinkhoff T., Giebel H.-A., Simon M. 2008; Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539 [View Article][PubMed]
    [Google Scholar]
  9. Buchan A., González J. M., Moran M. A. 2005; Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677 [View Article][PubMed]
    [Google Scholar]
  10. Choi D. H., Yi H., Chun J., Cho B. C. 2006; Jannaschia seosinensis sp. nov., isolated from hypersaline water of a solar saltern in Korea. Int J Syst Evol Microbiol 56:45–49 [View Article][PubMed]
    [Google Scholar]
  11. Choi D. H., Cho J. C., Lanoil B. D., Giovannoni S. J., Cho B. C. 2007; Maribius salinus gen. nov., sp. nov., isolated from a solar saltern and Maribius pelagius sp. nov., cultured from the Sargasso Sea, belonging to the Roseobacter clade. Int J Syst Evol Microbiol 57:270–275 [View Article][PubMed]
    [Google Scholar]
  12. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  13. Dickschat J. S., Wagner-Döbler I., Schulz S. 2005; The chafer pheromone buibuilactone and ant pyrazines are also produced by marine bacteria. J Chem Ecol 31:925–947 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  15. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  16. Giovannoni S. J., Rappe M. 2000; Evolution, diversity and molecular ecology of marine prokaryotes. In Microbial Ecology of the Oceans pp. 47–84 Edited by Kirchman D. L. New York: Wiley;
    [Google Scholar]
  17. González J. M., Moran M. A. 1997; Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242[PubMed]
    [Google Scholar]
  18. González J. M., Kiene R. P., Moran M. A. 1999; Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria . Appl Environ Microbiol 65:3810–3819[PubMed]
    [Google Scholar]
  19. González J. M., Simó R., Massana R., Covert J. S., Casamayor E. O., Pedrós-Alió C., Moran M. A. 2000; Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246 [View Article][PubMed]
    [Google Scholar]
  20. González J. M., Covert J. S., Whitman W. B., Henriksen J. R., Mayer F., Scharf B., Schmitt R., Buchan A., Fuhrman J. A. other authors 2003; Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269 [View Article][PubMed]
    [Google Scholar]
  21. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  22. Ijare O. B., Somashekar B. S., Jadegoud Y., Nagana Gowda G. A. 2005; 1H and 13C NMR characterization and stereochemical assignments of bile acids in aqueous media. Lipids 40:1031–1041 [View Article][PubMed]
    [Google Scholar]
  23. Jung Y.-T., Kim B.-H., Oh T.-K., Yoon J.-H. 2010; Pseudoruegeria lutimaris sp. nov., isolated from a tidal flat sediment, and emended description of the genus Pseudoruegeria . Int J Syst Evol Microbiol 60:1177–1181 [View Article][PubMed]
    [Google Scholar]
  24. Jung Y.-T., Lee J. S., Oh K.-H., Oh T.-K., Yoon J.-H. 2011; Roseovarius marinus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 61:427–432 [View Article]
    [Google Scholar]
  25. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [View Article]
    [Google Scholar]
  26. Kim D., Lee J. S., Kim J., Kang S. J., Yoon J. H., Kim W. G., Lee C. H. 2007; Biosynthesis of bile acids in a variety of marine bacterial taxa. J Microbiol Biotechnol 17:403–407[PubMed]
    [Google Scholar]
  27. Kim B.-Y., Yoo S.-H., Weon H.-Y., Jeon Y.-A., Hong S.-B., Go S.-J., Stackebrandt E., Kwon S.-W. 2008; Jannaschia pohangensis sp. nov., isolated from seashore sand in Korea. Int J Syst Evol Microbiol 58:496–499 [View Article][PubMed]
    [Google Scholar]
  28. Kim B.-Y., Weon H.-Y., Son J.-A., Lee C.-M., Hong S.-B., Jeon Y.-A., Koo B.-S., Kwon S.-W. 2009; Thalassobacter arenae sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 59:487–490 [View Article][PubMed]
    [Google Scholar]
  29. Kim S. H., Yang H. O., Sohn Y. C., Kwon H. C. 2010; Aeromicrobium halocynthiae sp. nov., a taurocholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi . Int J Syst Evol Microbiol 60:2793–2798 [View Article][PubMed]
    [Google Scholar]
  30. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  31. Kumar S., Nei M., Dudley J., Tamura K. 2008; mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [View Article][PubMed]
    [Google Scholar]
  32. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [View Article][PubMed]
    [Google Scholar]
  33. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [View Article][PubMed]
    [Google Scholar]
  34. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  35. Li H., Shinde P. B., Lee H. J., Yoo E. S., Lee C.-O., Hong J., Choi S. H., Jung J. H. 2009; Bile acid derivatives from a sponge-associated bacterium Psychrobacter sp.. Arch Pharm Res 32:857–862 [View Article][PubMed]
    [Google Scholar]
  36. Macián M. C., Arahal D. R., Garay E., Ludwig W., Schleifer K. H., Pujalte M. J. 2005a; Thalassobacter stenotrophicus gen. nov., sp. nov., a novel marine α-proteobacterium isolated from Mediterranean sea water. Int J Syst Evol Microbiol 55:105–110 [View Article][PubMed]
    [Google Scholar]
  37. Macián M. C., Arahal D. R., Garay E., Ludwig W., Schleifer K. H., Pujalte M. J. 2005b; Jannaschia rubra sp. nov., a red-pigmented bacterium isolated from sea water. Int J Syst Evol Microbiol 55:649–653 [View Article][PubMed]
    [Google Scholar]
  38. Maneerat S., Nitoda T., Kanzaki H., Kawai F. 2005; Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 67:679–683 [View Article][PubMed]
    [Google Scholar]
  39. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  40. Nedashkovskaya O. I., Kim S. B., Vancanneyt M., Snauwaert C., Lysenko A. M., Rohde M., Frolova G. M., Zhukova N. V., Mikhailov V. V. other authors 2006; Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa . Int J Syst Evol Microbiol 56:161–167 [View Article][PubMed]
    [Google Scholar]
  41. Oh Y.-S., Lim H.-J., Cha I.-T., Im W.-T., Yoo J.-S., Kang U. G., Rhee S.-K., Roh D. H. 2009; Roseovarius halotolerans sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 59:2718–2723 [View Article][PubMed]
    [Google Scholar]
  42. Park S. C., Kim C. J., Uramoto M., Yun H. I., Yoon K. H., Oh T. K. 1995; Antibacterial substance produced by Streptococcus faecium under anaerobic culture. Biosci Biotechnol Biochem 59:1966–1967 [View Article][PubMed]
    [Google Scholar]
  43. Pujalte M. J., Macián M. C., Arahal D. R., Garay E. 2005; Thalassobacter stenotrophicus Macian et al. 2005 is a later synonym of Jannaschia cystaugens Adachi et al. 2004, with emended description of the genus Thalassobacter . Int J Syst Evol Microbiol 55:1959–1963 [View Article][PubMed]
    [Google Scholar]
  44. Rao D., Webb J. S., Kjelleberg S. 2005; Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata . Appl Environ Microbiol 71:1729–1736 [View Article][PubMed]
    [Google Scholar]
  45. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  46. Selje N., Simon M., Brinkhoff T. 2004; A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448 [View Article][PubMed]
    [Google Scholar]
  47. Süßmuth R., Eberspächer J., Haag R., Springer W. 1987 Biol-chemischmikrobiologisches Praktikum Stuttgart: Thieme Verlag;
    [Google Scholar]
  48. Tamaoka J. 1986; Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 123:251–256 [View Article][PubMed]
    [Google Scholar]
  49. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  50. Wagner-Döbler I., Rheims H., Felske A., Pukall R., Tindall B. J. 2003; Jannaschia helgolandensis gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int J Syst Evol Microbiol 53:731–738 [View Article][PubMed]
    [Google Scholar]
  51. Wagner-Döbler I., Rheims H., Felske A., El-Ghezal A., Flade-Schröder D., Laatsch H., Lang S., Pukall R., Tindall B. J. 2004; Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54:1177–1184 [View Article][PubMed]
    [Google Scholar]
  52. Wang B., Tan T., Shao Z. 2009; Roseovarius pacificus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 59:1116–1121 [View Article][PubMed]
    [Google Scholar]
  53. Wang B., Sun F., Lai Q., Du Y., Liu X., Li G., Luo J., Shao Z. 2010; Roseovarius nanhaiticus sp. nov., a member of the Roseobacter clade isolated from marine sediment. Int J Syst Evol Microbiol 60:1289–1295 [View Article][PubMed]
    [Google Scholar]
  54. Waterhous D. V., Barnes S., Muccio D. D. 1985; Nuclear magnetic resonance spectroscopy of bile acids. Development of two-dimensional NMR methods for the elucidation of proton resonance assignments for five common hydroxylated bile acids, and their parent bile acid, 5 beta-cholanoic acid. J Lipid Res 26:1068–1078[PubMed]
    [Google Scholar]
  55. Yoon J.-H., Lee S.-Y., Kang S.-J., Lee C.-H., Oh T.-K. 2007a; Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 57:542–547 [View Article][PubMed]
    [Google Scholar]
  56. Yoon J.-H., Kang S.-J., Park S., Oh T.-K. 2007b; Jannaschia donghaensis sp. nov., isolated from seawater of the East Sea, Korea. Int J Syst Evol Microbiol 57:2132–2136 [View Article][PubMed]
    [Google Scholar]
  57. Yoon J.-H., Kang S.-J., Oh T.-K. 2008; Roseovarius aestuarii sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 58:1198–1202 [View Article][PubMed]
    [Google Scholar]
  58. Yoon J.-H., Kang S.-J., Park S., Oh K.-H., Oh T.-K. 2010; Jannaschia seohaensis sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 60:191–195 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028738-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028738-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error