1887

Abstract

A novel sulfate-reducing bacterium, designated C1TLV30, was isolated from wood falls at a depth of 1693 m in the Mediterranean Sea. Cells were motile vibrios (2–4×0.5 µm). Strain C1TLV30 grew at temperatures between 15 and 45 °C (optimum 30 °C) and at pH 5.4–8.6 (optimum 7.3). It required NaCl for growth (optimum at 25 g NaCl l) and tolerated up to 80 g NaCl l. Strain C1TLV30 used as energy sources: lactate, fumarate, formate, malate, pyruvate and ethanol. The end products from lactate oxidation were acetate, HS and CO in the presence of sulfate as terminal electron acceptor. Besides sulfate, thiosulfate and sulfite were also used as terminal electron acceptors, but not elemental sulfur, fumarate, nitrate or nitrite. Strain C1TLV30 possessed desulfoviridin and was piezophilic, growing optimally at 10 MPa (range 0–30 MPa). The membrane lipid composition of this strain was examined to reveal an increase in fatty acid chain lengths at high hydrostatic pressures. The G+C content of the genomic DNA was 49.6 % and the genome size was estimated at 3.5±0.5 Mb. Phylogenetic analysis of the SSU rRNA gene sequence indicated that strain C1TLV30 was affiliated to the genus with being its closest phylogenetic relative (similarity of 96.4 %). On the basis of SSU rRNA gene sequence comparisons and physiological characteristics, strain C1TLV30 ( = DSM 21447  = JCM 1548) is proposed to be assigned to a novel species of the genus , sp. nov.

Funding
This study was supported by the:
  • , CHEMECO (European Sciences Foundation/Eurocores/EURODEEP)
  • , GDRE DIWOOD (European Research Group CNRS-MPG)
  • , HERMES (EC)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028670-0
2011-11-01
2020-11-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2706.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028670-0&mimeType=html&fmt=ahah

References

  1. Alazard D., Dukan S., Urios A., Verhé F., Bouabida N., Morel F., Thomas P., Garcia J. L., Ollivier B. 2003; Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178 [CrossRef][PubMed]
    [Google Scholar]
  2. Allen E. E., Facciotti D., Bartlett D. H. 1999; Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720[PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  4. Audiffrin C., Cayol J. L., Joulian C., Casalot L., Thomas P., Garcia J. L., Ollivier B. 2003; Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1585–1590 [CrossRef][PubMed]
    [Google Scholar]
  5. Bale S. J., Goodman K., Rochelle P. A., Marchesi J. R., Fry J. C., Weightman A. J., Parkes R. J. 1997; Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521 [CrossRef][PubMed]
    [Google Scholar]
  6. Bartlett D. H. 2002; Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381 [CrossRef][PubMed]
    [Google Scholar]
  7. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. 2008; GenBank. Nucleic Acids Res 36:Database issueD25–D30 [CrossRef][PubMed]
    [Google Scholar]
  8. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  9. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. et al. 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:Database issueD141–D145 [CrossRef][PubMed]
    [Google Scholar]
  10. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  11. Fardeau M. L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J. L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [CrossRef][PubMed]
    [Google Scholar]
  12. Fauque G., Ollivier B. 2004; Anaerobes: the sulfate-reducing bacteria as an example of metabolic diversity. In Microbial Diversity and Bioprospecting pp. 169–176 Edited by Bull A. T. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  14. Gaudron S. M., Pailleret M., Duperron S., Pradillon F., Gaill F. 2010; Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna. Mar Environ Res 70:1–12 [CrossRef][PubMed]
    [Google Scholar]
  15. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Hernandez-Eugenio G., Fardeau M. L., Patel B. K. C., Marcarie H., Garcia J. L., Ollivier B. 2000; Desulfovibrio mexicanus sp. nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6:305–312 [CrossRef]
    [Google Scholar]
  17. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [CrossRef]
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  19. Kado C. I., Liu S. T. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373[PubMed]
    [Google Scholar]
  20. Kates M. 1986; Influence of salt concentration on the membrane lipids of halophilic bacteria. FEMS Microbiol Rev 39:95–101 [CrossRef]
    [Google Scholar]
  21. Lefèvre C. T., Bernadac A., Yu-Zhang K., Pradel N., Wu L. F. 2009; Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol 11:1646–1657 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  23. Nilsson T., Björdal C. G. 2008; Culturing wood-degrading erosion bacteria. Int Biodeter Biodegrad 61:3–10 [CrossRef]
    [Google Scholar]
  24. Ollivier B., Guyot F. 2009; Sulfate-reducing bacteria: a deep biosphere-early life connection?. Environ Microbiol Reports 1:14–16
    [Google Scholar]
  25. Ollivier B., Cayol J. L., Fauque G. 2007; Sulphate-reducing bacteria from oil fields environments and deep-sea hydrothermal vents. In Sulphate-Reducing Bacteria: Environmental and Engineered Systems pp. 305–328 Edited by Barton L. L., Hamilton W. A. London: Cambridge University Press; [CrossRef]
    [Google Scholar]
  26. Palacios C., Zbinden M., Pailleret M., Gaill F., Lebaron P. 2009; Highly similar prokaryotic communities of sunken wood at shallow and deep-sea sites across the oceans. Microb Ecol 58:737–752 [CrossRef][PubMed]
    [Google Scholar]
  27. Parkes R. J., Sass H. 2007; The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance. In Sulphate-Reducing Bacteria: Environmental and Engineered Systems pp. 329–358 Edited by Barton L. L., Hamilton W. A. London: Cambridge University Press; [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Simonato F., Campanaro S., Lauro F. M., Vezzi A., D’Angelo M., Vitulo N., Valle G., Bartlett D. H. 2006; Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25 [CrossRef][PubMed]
    [Google Scholar]
  30. Tamburini C., Goutx M., Guigue C., Garel M., Lefèvre D., Charrière B., Sempéré R., Pepa S., Peterson M. L., Wakeham S. 2009; Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res Part II Top Stud Oceanogr 56:1533–1546 [CrossRef]
    [Google Scholar]
  31. Vainshtein M. B., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol 15:554–566 [CrossRef]
    [Google Scholar]
  32. Widdel F., Pfenning N. 1984; Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. Isolation of a new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp nov. Arch Microbiol 129:395–400 [CrossRef]
    [Google Scholar]
  33. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310 [CrossRef]
    [Google Scholar]
  34. Yano Y., Nakayama A., Ishihara K., Saito H. 1998; Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64:479–485[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028670-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028670-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error