1887

Abstract

A taxonomic study was performed on two isolates, designated strains MK-B5 and MK-B7, isolated from sediment of a solar saltern pond in Gomso Bay, Republic of Korea. Comparative 16S rRNA gene sequence analysis showed that strains MK-B5 and MK-B7 belong to the and are related most closely to JCM 11575 ( = E1L3A) (96.3 and 96.5 % similarity, respectively), KCCM 90064 ( = CL-ES53) (95.6 and 95.6 %) and JCM 115514 ( = EPR70) (95.1 and 95.3 %). The level of 16S rRNA gene sequence similarity between strains MK-B5 and MK-B7 was 99.8 %. The G+C contents of their genomic DNAs were 63.4 and 63.6 mol%, respectively, and the major respiratory quinone was ubiquinone-8. DNA–DNA relatedness between strains MK-B5 and MK-B7 was 98 %, indicating that the two isolates represent a single species. However, the level of DNA–DNA relatedness between the two isolates and E1L3A (26.4–30.8 %) indicates that they represent a novel species. Strains MK-B5 and MK-B7 possessed C, C and Cω8 cyclo as major fatty acids. The two isolates were Gram-stain-negative, strictly aerobic, short rod-shaped and motile. They grew at 10–40 °C (optimum, 35–37 °C), at pH 5.0–8.5 (optimum, 7.0–7.5) and with 5–25 % (w/v) NaCl (optimum, 15 % NaCl). On the basis of phenotypic and phylogenetic analyses, strains MK-B5 and MK-B7 are thus considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MK-B5 ( = KCTC 23198 = JCM 17073).

Funding
This study was supported by the:
  • , National Research Foundation of Korea (NRF) , (Award 2009-0087901)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028647-0
2012-08-01
2020-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1877.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028647-0&mimeType=html&fmt=ahah

References

  1. Antunes A., Eder W., Fareleira P., Santos H., Huber R. 2003; Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine–seawater interface of the Shaban Deep, Red Sea. Extremophiles 7:29–34[PubMed]
    [Google Scholar]
  2. Atlas R. M. 2004 Handbook of Microbiological Media, 3rd edn. Boca Raton, FL: CRC Press; [CrossRef]
    [Google Scholar]
  3. Bae G. D., Hwang C. Y., Kim H. M., Cho B. C. 2010; Salinisphaera dokdonensis sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 60:680–685 [CrossRef][PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  5. Crespo-Medina M., Chatziefthimiou A., Cruz-Matos R., Pérez-Rodríguez I., Barkay T., Lutz R. A., Starovoytov V., Vetriani C. 2009; Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera . Int J Syst Evol Microbiol 59:1497–1503 [CrossRef][PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  8. Forbes L. 1981; Rapid flagella stain. J Clin Microbiol 13:807–809[PubMed]
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  12. Ito T., Sugita K., Yumoto I., Nodasaka Y., Okabe S. 2005; Thiovirga sulfuroxydans gen. nov., sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium isolated from a microaerobic waste-water biofilm. Int J Syst Evol Microbiol 55:1059–1064 [CrossRef][PubMed]
    [Google Scholar]
  13. Kelly D. P., Wood A. P. 2000; Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov.. Int J Syst Evol Microbiol 50:511–516 [CrossRef][PubMed]
    [Google Scholar]
  14. Kidd K. K., Sgaramella-Zonta L. A. 1971; Phylogenetic analysis: concepts and methods. Am J Hum Genet 23:235–252[PubMed]
    [Google Scholar]
  15. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  16. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703 [CrossRef][PubMed]
    [Google Scholar]
  17. MIDI 1999 Sherlock Microbial Identification System, Operating Manual version 3.0 Newark, DE: MIDI;
    [Google Scholar]
  18. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Park S. J., Kang C. H., Rhee S. K. 2006; Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J Microbiol Biotechnol 16:1640–1645
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  21. Sievert S. M., Heidorn T., Kuever J. 2000; Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus . Int J Syst Evol Microbiol 50:1229–1237 [CrossRef][PubMed]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  25. Tittsler R. P., Sandholzer L. A. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580[PubMed]
    [Google Scholar]
  26. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  28. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  29. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn. pp. 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. Berlin: Springer; [CrossRef]
    [Google Scholar]
  30. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  31. Yi H., Chang Y. H., Oh H. W., Bae K. S., Chun J. 2003; Zooshikella ganghwensis gen. nov., sp. nov., isolated from tidal flat sediments. Int J Syst Evol Microbiol 53:1013–1018 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028647-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028647-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error