1887

Abstract

A taxonomic study was performed on two isolates, designated strains MK-B5 and MK-B7, isolated from sediment of a solar saltern pond in Gomso Bay, Republic of Korea. Comparative 16S rRNA gene sequence analysis showed that strains MK-B5 and MK-B7 belong to the and are related most closely to JCM 11575 ( = E1L3A) (96.3 and 96.5 % similarity, respectively), KCCM 90064 ( = CL-ES53) (95.6 and 95.6 %) and JCM 115514 ( = EPR70) (95.1 and 95.3 %). The level of 16S rRNA gene sequence similarity between strains MK-B5 and MK-B7 was 99.8 %. The G+C contents of their genomic DNAs were 63.4 and 63.6 mol%, respectively, and the major respiratory quinone was ubiquinone-8. DNA–DNA relatedness between strains MK-B5 and MK-B7 was 98 %, indicating that the two isolates represent a single species. However, the level of DNA–DNA relatedness between the two isolates and E1L3A (26.4–30.8 %) indicates that they represent a novel species. Strains MK-B5 and MK-B7 possessed C, C and Cω8 cyclo as major fatty acids. The two isolates were Gram-stain-negative, strictly aerobic, short rod-shaped and motile. They grew at 10–40 °C (optimum, 35–37 °C), at pH 5.0–8.5 (optimum, 7.0–7.5) and with 5–25 % (w/v) NaCl (optimum, 15 % NaCl). On the basis of phenotypic and phylogenetic analyses, strains MK-B5 and MK-B7 are thus considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MK-B5 ( = KCTC 23198 = JCM 17073).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028647-0
2012-08-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1877.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028647-0&mimeType=html&fmt=ahah

References

  1. Antunes A. , Eder W. , Fareleira P. , Santos H. , Huber R. . ( 2003; ). Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine–seawater interface of the Shaban Deep, Red Sea. . Extremophiles 7:, 29–34.[PubMed]
    [Google Scholar]
  2. Atlas R. M. . ( 2004; ). Handbook of Microbiological Media, , 3rd edn.. Boca Raton, FL:: CRC Press;. [CrossRef]
    [Google Scholar]
  3. Bae G. D. , Hwang C. Y. , Kim H. M. , Cho B. C. . ( 2010; ). Salinisphaera dokdonensis sp. nov., isolated from surface seawater. . Int J Syst Evol Microbiol 60:, 680–685. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  5. Crespo-Medina M. , Chatziefthimiou A. , Cruz-Matos R. , Pérez-Rodríguez I. , Barkay T. , Lutz R. A. , Starovoytov V. , Vetriani C. . ( 2009; ). Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera . . Int J Syst Evol Microbiol 59:, 1497–1503. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Forbes L. . ( 1981; ). Rapid flagella stain. . J Clin Microbiol 13:, 807–809.[PubMed]
    [Google Scholar]
  9. Gonzalez J. M. , Saiz-Jimenez C. . ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  11. Hiraishi A. , Ueda Y. , Ishihara J. , Mori T. . ( 1996; ). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  12. Ito T. , Sugita K. , Yumoto I. , Nodasaka Y. , Okabe S. . ( 2005; ). Thiovirga sulfuroxydans gen. nov., sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium isolated from a microaerobic waste-water biofilm. . Int J Syst Evol Microbiol 55:, 1059–1064. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kelly D. P. , Wood A. P. . ( 2000; ). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov.. Int J Syst Evol Microbiol 50:, 511–516. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kidd K. K. , Sgaramella-Zonta L. A. . ( 1971; ). Phylogenetic analysis: concepts and methods. . Am J Hum Genet 23:, 235–252.[PubMed]
    [Google Scholar]
  15. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  16. Kovacs N. . ( 1956; ). Identification of Pseudomonas pyocyanea by the oxidase reaction. . Nature 178:, 703. [CrossRef] [PubMed]
    [Google Scholar]
  17. MIDI ( 1999; ). Sherlock Microbial Identification System, Operating Manual version 3.0. Newark, DE:: MIDI;.
    [Google Scholar]
  18. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Park S. J. , Kang C. H. , Rhee S. K. . ( 2006; ). Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. . J Microbiol Biotechnol 16:, 1640–1645.
    [Google Scholar]
  20. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Sievert S. M. , Heidorn T. , Kuever J. . ( 2000; ). Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus . . Int J Syst Evol Microbiol 50:, 1229–1237. [CrossRef] [PubMed]
    [Google Scholar]
  22. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  24. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  25. Tittsler R. P. , Sandholzer L. A. . ( 1936; ). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  26. Vreeland R. H. , Litchfield C. D. , Martin E. L. , Elliot E. . ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. . Int J Syst Bacteriol 30:, 485–495. [CrossRef]
    [Google Scholar]
  27. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  28. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  29. Widdel F. , Bak F. . ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. . In The Prokaryotes, , 2nd edn., pp. 3352–3378. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K.-H. . . Berlin:: Springer;.[CrossRef]
    [Google Scholar]
  30. Wolin E. A. , Wolin M. J. , Wolfe R. S. . ( 1963; ). Formation of methane by bacterial extracts. . J Biol Chem 238:, 2882–2886.[PubMed]
    [Google Scholar]
  31. Yi H. , Chang Y. H. , Oh H. W. , Bae K. S. , Chun J. . ( 2003; ). Zooshikella ganghwensis gen. nov., sp. nov., isolated from tidal flat sediments. . Int J Syst Evol Microbiol 53:, 1013–1018. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028647-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028647-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error