1887

Abstract

Six strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from the Mediterranean Sea. 16S rRNA gene sequence analysis indicated that the strains were affiliated within the alphaproteobacterial genus , with (99·4 %) and (99·2 %) as their closest relatives. This affiliation was supported by chemotaxonomic data (major polar lipids: phosphatidyl diacylglycerol, sulfoquinovosyl diacylglycerol and phosphatidyl glucopyranosyl diacylglycerol; major fatty acids: C, C, C, C, C 8, 11-Me-C 5). The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the strains from all recognized species. The strains therefore represent a novel species, for which the name sp. nov. is proposed, with the type strain V4.BO.10 (=LMG 21911=CIP 107934).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02852-0
2005-01-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550479.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02852-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Meyer H., Lindholst S., Vancanneyt M., Smit J. 1997; Phospho- and sulfolipids as biomarkers of Caulobacter , Brevundimonas and Hyphomonas . Syst Appl Microbiol 20:522–539 [CrossRef]
    [Google Scholar]
  2. Abraham W. R., Strömpl C., Meyer H. 8 other authors 1999; Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49:1053–1073 [CrossRef]
    [Google Scholar]
  3. Abraham W.-R., Strömpl C., Bennasar A., Vancanneyt M., Snauwaert C., Swings J., Smit J., Moore E. R. B. 2002; Phylogeny of Maricaulis Abraham et al. 1999 and proposal of Maricaulis virginensis sp. nov., Maricaulis parjimensis sp. nov., Maricaulis washingtonensis sp. nov., and Maricaulis salignorans sp. nov. Int J Evol Syst Microbiol 52:2191–2201 [CrossRef]
    [Google Scholar]
  4. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  6. Felsenstein J. 2004 Inferring Phylogenies Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  7. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284 [CrossRef]
    [Google Scholar]
  8. Fritz I. 2000; Das Bakterioplankton im Westlichen Mittelmeer . PhD thesis Technical University Braunschweig; (in German http://www.biblio.tu-bs.de/ediss/data/20000811a/20000811a.html
  9. Gillis M., De Ley J., Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153 [CrossRef]
    [Google Scholar]
  10. Hines B., Dyall-Smith M. 2003; arb for Mac OS X: phylogeny with finesse!. http://www.microbiol.unimelb.edu.au/micro/staff/mds/ARB_OSX/ARB_to_MacOSX.html
  11. Höfle M. G. 1998; Genotyping of bacterial isolates from the environment using low-molecular-weight RNA fingerprints. In Molecular Microbial Ecology Manual pp  1–23 Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J. Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. H. New York: Academic Press;
    [Google Scholar]
  13. Li Y., Kawamura Y., Fujiwara N., Naka T., Liu H., Huang X., Kobayashi K., Ezaki T. 2004; Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int J Syst Evol Microbiol 54:819–825 [CrossRef]
    [Google Scholar]
  14. Link W., Dixkens C., Singh M., Schwall M., Melchinger A. E. 1995; Genetic diversity in European and Mediterranean faba bean germ plasm revealed by RAPD markers. Theor Appl Genet 90:27–32
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb, a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  16. Mergaert J., Boley A., Cnockaert M. C., Muller W. R., Swings J. 2001; Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst Appl Microbiol 24:303–310 [CrossRef]
    [Google Scholar]
  17. Segers P., Vancanneyt M., Pot B., Torck U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen.nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44:499–510 [CrossRef]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp  409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Stahl D. A., Key R., Flesher B., Smit J. 1992; The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol 174:2193–2198
    [Google Scholar]
  20. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  21. Wayne L., Brenner D., Colwell R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  22. Yokoyama A., Miki W., Izumida H., Shizuri Y. 1996; New trihydroxy-keto-carotenoids isolation from an astaxanthin-producing marine bacterium. Biosci Biotechnol Biochem 60:200–203 [CrossRef]
    [Google Scholar]
  23. Ziemke F., Brettar I., Höfle M. G. 1997; Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol 13:63–74 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02852-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02852-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error