1887

Abstract

A novel bacterial strain, designated NRCPB10, was isolated from rhizosphere soil of chickpea ( L.) in Pusa, New Delhi, India. The 16S rRNA gene sequence of strain NRCPB10 showed highest similarity (98.9 %) to that of NCPPB 2437, followed by AF3-10 (97.7 %) and IFO 13261 (97.4 %). Phylogenetic analysis of strain NRCPB10 based on the housekeeping genes and confirmed its position as distinct from recognized species. Levels of DNA–DNA relatedness between strain NRCPB10 and ICMP 5785, LMG 21410 and ICMP 6428 were 51.0, 32.6 and 27.3 %, respectively. Cellular fatty acids of strain NRCPB10 were Cω7 (58.9 %), C (15.5 %), C cyclo ω8 (11.5 %), iso-C (5.8 %), C 3-OH (4.5 %), Cω7 (2.1 %) and C (1.3 %). The G+C content of the genomic DNA of strain NRCPB10 was 59.0 mol%. Strain NRCPB10 did not nodulate chickpea plants or induce tumours in tobacco plants. Phenotypic and physiological properties along with SDS-PAGE of whole-cell soluble proteins differentiated strain NRCPB10 from its closest phylogenetic neighbours. On the basis of data from the present polyphasic taxonomic study, strain NRCPB10 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NRCPB10 ( = LMG 25623 = JCM 16209 = NCIMB 14639).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028407-0
2011-11-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2632.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028407-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bhadra B. , Raghukumar C. , Pindi P. K. , Shivaji S. . ( 2008; ). Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean. . Int J Syst Evol Microbiol 58:, 57–60. [CrossRef] [PubMed]
    [Google Scholar]
  3. Das S. K. , Mishra A. K. , Tindall B. J. , Rainey F. A. , Stackebrandt E. . ( 1996; ). Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. . Int J Syst Bacteriol 46:, 981–987. [CrossRef] [PubMed]
    [Google Scholar]
  4. Das S. K. , Gautam U. S. , Chakrabartty P. K. , Singh A. . ( 2006; ). Characterization of a symbiotically defective serine auxotroph of Mesorhizobium ciceri . . FEMS Microbiol Lett 263:, 244–251. [CrossRef] [PubMed]
    [Google Scholar]
  5. Diouf A. , de Lajudie P. , Neyra M. , Kersters K. , Gillis M. , Martinez-Romero E. , Gueye M. . ( 2000; ). Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). . Int J Syst Evol Microbiol 50:, 159–170. [CrossRef] [PubMed]
    [Google Scholar]
  6. Eardly B. D. , Young J. P. W. , Selander R. K. . ( 1992; ). Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. . Appl Environ Microbiol 58:, 1809–1815.[PubMed]
    [Google Scholar]
  7. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Gaunt M. W. , Turner S. L. , Rigottier-Gois L. , Lloyd-Macgilp S. A. , Young J. P. W. . ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. . Int J Syst Evol Microbiol 51:, 2037–2048. [CrossRef] [PubMed]
    [Google Scholar]
  10. Haukka K. , Lindström K. , Young J. P. W. . ( 1998; ). Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. . Appl Environ Microbiol 64:, 419–426.[PubMed]
    [Google Scholar]
  11. Hunter W. J. , Kuykendall L. D. , Manter D. K. . ( 2007; ). Rhizobium selenireducens sp. nov.: a selenite-reducing α-Proteobacteria isolated from a bioreactor. . Curr Microbiol 55:, 455–460. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kuykendall L. D. , Roy M. D. , O’Neill J. J. , Devine T. E. . ( 1988; ). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  14. Laemmli U. K. . ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef] [PubMed]
    [Google Scholar]
  15. Laguerre G. , Bardin M. , Amarger N. . ( 1993; ). Isolation from soil of symbiotic and nonsymbiotic Rhizobium leguminosarum by DNA hybridization. . Can J Microbiol 39:, 1142–1149. [CrossRef]
    [Google Scholar]
  16. Leonard L. T. . ( 1943; ). A simple assembly for use in testing cultures of rhizobia. . J Bacteriol 45:, 523–527.[PubMed]
    [Google Scholar]
  17. McKnight T. . ( 1949; ). Efficiency of isolates of Rhizobium in cowpea group with proposed additions of this group. . Queensland J Agric Sci 6:, 61–76.
    [Google Scholar]
  18. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  19. Panda S. K. , Jyoti V. , Bhadra B. , Nayak K. C. , Shivaji S. , Rainey F. A. , Das S. K. . ( 2009; ). Thiomonas bhubaneswarensis sp. nov., an obligately mixotrophic, moderately thermophilic, thiosulfate-oxidizing bacterium. . Int J Syst Evol Microbiol 59:, 2171–2175. [CrossRef] [PubMed]
    [Google Scholar]
  20. Panday D. , Das S. K. . ( 2010; ). Chelatococcus sambhunathii sp. nov., a moderately thermophilic alphaproteobacterium isolated from hot spring sediment. . Int J Syst Evol Microbiol 60:, 861–865. [CrossRef] [PubMed]
    [Google Scholar]
  21. Poly F. , Monrozier L. J. , Bally R. . ( 2001; ). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef] [PubMed]
    [Google Scholar]
  22. Quan Z. X. , Bae H. S. , Baek J. H. , Chen W. F. , Im W. T. , Lee S. T. . ( 2005; ). Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. . Int J Syst Evol Microbiol 55:, 2543–2549. [CrossRef] [PubMed]
    [Google Scholar]
  23. Quigley P. E. , Cunningham P. J. , Hannah M. , Ward G. N. , Morgan T. . ( 1997; ). Symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii collected from pastures in south-western Victoria. . Aust J Exp Agric 37:, 623–630. [CrossRef]
    [Google Scholar]
  24. Rosenblueth M. , Martínez-Romero E. . ( 2004; ). Rhizobium etli maize populations and their competitiveness for root colonization. . Arch Microbiol 181:, 337–344. [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Segovia L. , Piñero D. , Palacios R. , Martínez-Romero E. . ( 1991; ). Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum . . Appl Environ Microbiol 57:, 426–433.[PubMed]
    [Google Scholar]
  27. Sharma D. P. , Thomas C. , Hall R. H. , Levine M. M. , Attridge S. R. . ( 1989; ). Significance of toxin-coregulated pili as protective antigens of Vibrio cholerae in the infant mouse model. . Vaccine 7:, 451–456. [CrossRef] [PubMed]
    [Google Scholar]
  28. Soberon-Chavez G. , Najera R. . ( 1989; ). Isolation from soil of Rhizobium leguminosarum lacking symbiotic information. . Can J Microbiol 35:, 464–468. [CrossRef]
    [Google Scholar]
  29. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  30. Sullivan J. T. , Eardly B. D. , van Berkum P. , Ronson C. W. . ( 1996; ). Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus . . Appl Environ Microbiol 62:, 2818–2825.[PubMed]
    [Google Scholar]
  31. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  32. Tan Z. Y. , Xu X. D. , Wang E. T. , Gao J. L. , Martinez-Romero E. , Chen W. X. . ( 1997; ). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. . Int J Syst Bacteriol 47:, 874–879. [CrossRef] [PubMed]
    [Google Scholar]
  33. Vauterin L. , Vauterin P. . ( 1992; ). Computer aided objective comparision of electrophoretic patterns for grouping and identification of microorganisms. . Eur Microbiol 1:, 37–41.
    [Google Scholar]
  34. Velázquez E. , Palomo J. L. , Rivas R. , Guerra H. , Peix A. , Trujillo M. E. , García-Benavides P. , Mateos P. F. , Wabiko H. , Martínez-Molina E. . ( 2010; ). Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes . . Syst Appl Microbiol 33:, 247–251. [CrossRef] [PubMed]
    [Google Scholar]
  35. Vincent J. M. . ( 1970; ). A Manual for the Practical Study of the Root Nodule Bacteria (I.B.P. Handbook no. 15). Oxford:: Blackwell;.
    [Google Scholar]
  36. Vinuesa P. , Silva C. , Werner D. , Martínez-Romero E. . ( 2005; ). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. . Mol Phylogenet Evol 34:, 29–54. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  38. Wayne L. G. , Good R. C. , Krichevsky M. I. , Blacklock Z. , David H. L. , Dawson D. , Gross W. , Hawkins J. , Levy-Frebault V. V. et al. & other authors ( 1991; ). Fourth report of the cooperative, open-ended study of slowly growing mycobacteria by the International Working Group on Mycobacterial Taxonomy. . Int J Syst Bacteriol 41:, 463–472. [CrossRef] [PubMed]
    [Google Scholar]
  39. Yanni Y. G. , Rizk R. Y. , Corich V. , Squartini A. , Ninke K. , Philip Hollingsworth S. , Orgambide G. , de Bruijn F. , Stoltzfus J. et al. & other authors ( 1997; ). Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. . Plant Soil 194:, 99–114. [CrossRef]
    [Google Scholar]
  40. Young J. M. , Kuykendall L. D. , Martínez-Romero E. , Kerr A. , Sawada H. . ( 2001; ). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis . . Int J Syst Evol Microbiol 51:, 98–103.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028407-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028407-0
Loading

Data & Media loading...

vol. , part 11, pp. 2632–2639

Comparison of the fatty acid profiles of strain NRCPB10 and the type strains of closely related species

Electron micrograph of a cell of strain NRCPB10 , showing the single polar flagellum

Dendrogram based on SDS-PAGE of proteins showing the relationships between strain NRCPB10 and the type strains of species

[ Single PDF file] (464 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error