1887

Abstract

Two Gram-negative-staining, aerobic bacterial strains, designated CL-SC21 and CL-SC22, were isolated from a culture of the diatom (Korean Marine Microalgae Culture Center, KMMCC strain B-396) established from the East Sea, Korea. The two novel strains shared 99.9 % 16S rRNA gene sequence similarity. Analysis of the 16S rRNA gene sequences showed an affiliation with the genus , with the strains sharing 96.5–97.5 % similarity with the type strains of recognized species of the genus and being most closely related to NL21. Phylogenetic analyses of the 16S rRNA gene sequences showed that strain CL-SC21 together with strain CL-SC22 belonged to the genus and formed a robust clade among closely related species. The polar lipids comprised phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid, an unidentified phospholipid and five unidentified lipids. Ubiquinone 10 was the major quinone. The major cellular fatty acids of strains CL-SC21 and CL-SC22 were Cω7 (70.6–72.3 %) and Cω8 cyclo (10.9–11.8 %). The genomic DNA G+C contents of strains CL-SC21 and CL-SC22 were 56.7 and 57.1 mol%, respectively. The level of DNA–DNA relatedness between strains CL-SC21 and CL-SC22 was 86 % (reciprocal 91 %), indicating that the two isolates represented a single species. However, levels of DNA–DNA relatedness between NL21 and strains CL-SC21 and CL-SC22 were 28 % (reciprocal 45 %) and 25 % (reciprocal 50 %), respectively. Phylogenetic analysis and the results of biochemical tests showed that strains CL-SC21 and CL-SC22 were different from all recognized species of the genus . Thus, strains CL-SC21 and CL-SC22 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CL-SC21 ( = KCCM 90090 = JCM 17288).

Funding
This study was supported by the:
  • Korean Government
  • Ministry of Land, Transport, and Maritime Affairs (MLTM), Korea
  • Ministry of Maritime Affairs and Fisheries (the Korea EAST-1 program)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028373-0
2011-11-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2676.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028373-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Anzai Y., Kudo Y., Oyaizu H. 1997; The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251 [View Article][PubMed]
    [Google Scholar]
  3. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496[PubMed]
    [Google Scholar]
  4. Cole J. R., Chai B., Farris R. J., Wang Q., Kulam-Syed-Mohideen A. S., McGarrell D. M., Bandela A. M., Cardenas E., Garrity G. M., Tiedje J. M. 2007; The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:Database issueD169–D172 [View Article][PubMed]
    [Google Scholar]
  5. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  6. Englen M. D., Kelley L. C. 2000; A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 31:421–426 [View Article][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  9. Guillard R. R. L., Ryther J. H. 1962; Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran.. Can J Microbiol 8:229–239 [View Article][PubMed]
    [Google Scholar]
  10. Hwang C. Y., Cho B. C. 2008; Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov.. Int J Syst Evol Microbiol 58:267–277 [View Article][PubMed]
    [Google Scholar]
  11. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J. 2005; jphydit: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21:3171–3173 [View Article][PubMed]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kang H. S., Yang H. L., Lee S. D. 2009; Nitratireductor kimnyeongensis sp. nov., isolated from seaweed. Int J Syst Evol Microbiol 59:1036–1039 [View Article][PubMed]
    [Google Scholar]
  14. Kim Y.-G., Choi D. H., Hyun S., Cho B. C. 2007; Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409–413 [View Article][PubMed]
    [Google Scholar]
  15. Kim K. H., Roh S. W., Chang H. W., Nam Y. D., Yoon J. H., Jeon C. O., Oh H. M., Bae J. W. 2009; Nitratireductor basaltis sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 59:135–138 [View Article][PubMed]
    [Google Scholar]
  16. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  17. Labbé N., Parent S., Villemur R. 2004; Nitratireductor aquibiodomus gen. nov., sp. nov., a novel alpha-proteobacterium from the marine denitrification system of the Montreal Biodome (Canada). Int J Syst Evol Microbiol 54:269–273 [View Article][PubMed]
    [Google Scholar]
  18. Lai Q., Yu Z., Wang J., Zhong H., Sun F., Wang L., Wang B., Shao Z. 2011a; Nitratireductor pacificus sp. nov., isolated from a pyrene-degrading consortium. Int J Syst Evol Microbiol 61:1386–1391 [View Article][PubMed]
    [Google Scholar]
  19. Lai Q., Yu Z., Yuan J., Sun F., Shao Z. 2011b; Nitratireductor indicus sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 61:295–298 [View Article][PubMed]
    [Google Scholar]
  20. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  21. Lyman J., Fleming R. H. 1940; Composition of sea water. J Mar Res 3:134–146
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  24. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  25. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  26. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  30. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. . Int J Syst Evol Microbiol 51:1639–1652 [View Article][PubMed]
    [Google Scholar]
  31. Swofford D. L. 1998; Phylogenetic analysis using parsimony (paup), version 4. Sunderland, MA: Sinauer Associates;
  32. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  33. Vanparys B., Heylen K., Lebbe L., De Vos P. 2005; Devosia limi sp. nov., isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 55:1997–2000 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.028373-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028373-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error