sp. nov. and sp. nov., isolated from the Russian space laboratory Mir Free

Abstract

On the basis of phenotypic and genotypic characteristics and 16S rRNA gene sequence analysis, novel species belonging to the genera and were identified from samples taken from the Russian space laboratory Mir. Strain A1-18 was isolated from the air. 16S rDNA sequence analysis showed that strain A1-18 formed a coherent cluster with , , and with sequence similarity of 97·5–98·6 %. Similar to other species, the G+C content was 66·1 mol%, but DNA–DNA hybridization rates at optimal temperatures among these related species were only 24·7–51·7 %. Strain A1-18 can be differentiated biochemically from related species. Strain W1-2B was isolated from condensation water. It forms a distinct lineage within the genus , forming a coherent cluster with , and . 16S rDNA sequence similarities were 98·6–99·5 % and the G+C content was 66·5 mol%, similar to other species, but DNA–DNA relatedness was only 50·2–54·8 %. Strain W1-2B also showed some differential biochemical properties from its related species. A series of polyphasic taxonomic studies led to the proposal of two novel species, sp. nov. (type strain A1-18=GTC 868=JCM 11416=DSM 14562) and sp. nov. (type strain W1-2B=GTC 1043=JCM 11415=DSM 14572).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02829-0
2004-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540819.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02829-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Strömpl C., Meyer H. 8 other authors 1999; Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49:1053–1073 [CrossRef]
    [Google Scholar]
  2. Denner E. B. M., Paukner S., Kämpfer P., Moore E. R. B., Abraham W.-R., Busse H.-J., Wanner G., Lubitz W. 2001; Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secrets an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Saidi S. M., Liu S. L., Hashimoto Y., Yamamoto H., Yabuuchi E. 1990; Rapid procedure to determine the DNA base composition from small amounts of Gram-positive bacteria. FEMS Microbiol Lett 55:127–130
    [Google Scholar]
  5. Ezaki T., Li N., Hashimoto Y., Miura H., Yamamoto H. 1994; 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov. Int J Syst Bacteriol 44:130–136 [CrossRef]
    [Google Scholar]
  6. Garrity G. M., Holt J. G. 2001; The road map to the Manual . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  119–166 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  7. Grimont P. A. D. 1999; Taxonomy and classification of bacteria. In Manual of Clinical Microbiology , 7th edn. pp  249–259 Edited by Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of “ Pseudomonas azotocolligans ” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  10. Kawamura Y., Li Y., Liu H., Huang X., Li Z., Ezaki T. 2001; Bacterial population in Russian space station “Mir”. Microbiol Immunol 45:819–828 [CrossRef]
    [Google Scholar]
  11. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  12. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  14. Segers P., Vancanneyt M., Pot B., Torck U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen.nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44:499–510 [CrossRef]
    [Google Scholar]
  15. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  16. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequencing weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  17. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  18. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  19. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al . 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
  20. Yano I., Yamada Y., Suzuki K. I. 1987; Analysis of bacterial ingredients. In Bacterial Identification in Accordance with Recent Taxonomy: Use of Phenotypic, Chemical, and Genetic Analysis pp  41–85 Edited by Yabuuchi E., Ezaki T., Park Y. H., Sugawara H., Suzuki K. I., Yamada Y., Yamanoto H., Yano I. Tokyo: Saikon Publications;
    [Google Scholar]
  21. Yun N. R., Shin Y. K., Hwang S. Y., Kuraishi H., Sugiyama J., Kawahara K. 2000; Chemotaxonomic and phylogenetic analyses of Sphingomonas strains isolated from ears of plants in the family Gramineae and a proposal of Sphingomonas roseoflava sp. nov. J Gen Appl Microbiol 46:9–18 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02829-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02829-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed