1887

Abstract

A novel actinomycete producing 2-allyloxyphenol, designated strain MS1/7, was isolated from sediments of the Sundarbans mangrove forest, India. Growth on International Project (ISP) media 2, 3, 4, 5 and 7 produced olive green to grey aerial hyphae that carried smooth-surfaced spores in a flexuous () arrangement. The strain contained -diaminopimelic acid, but no diagnostic sugars in whole-cell hydrolysates. Hexa-, octa- and a minor amount of tetra-hydrogenated menaquinones with nine isoprene units [MK-9 (H, H, H and H)] were present as isoprene analogues. Diagnostic phospholipids were phosphatidylethanolamine and diphosphatidylglycerol. The predominant fatty acids were anteiso-C (34.80 %), iso-C (16.45 %), C (10.53 %) and anteiso-C (10.92 %). The strain showed greater than 99 % 16S rRNA gene sequence similarity to the type strains of several recognized species of the genus , but in the phylogenetic tree based on 16S rRNA gene sequences it formed a distinct phyletic line and demonstrated closest relationships to viomycin-producers ( NRRL B-1221, MTCC 2534 and NRRL B-2895). However, strain MS1/7 could be distinguished from these and other closely related species based on low levels of DNA–DNA relatedness (<44 %) and disparate physiological features, principally amino acid utilization and growth in NaCl. Strain MS1/7 is therefore suggested to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MS1/7 ( = MTCC 10621 = DSM 42019).

Funding
This study was supported by the:
  • CSIR (Award 60(0070)/05/EMR-II)
  • DST PURSE
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028258-0
2011-11-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2664.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028258-0&mimeType=html&fmt=ahah

References

  1. Arumugam M., Mitra A., Jaisankar P., Dasgupta S., Sen T., Gachhui R., Kumar Mukhopadhyay U., Mukherjee J. 2010; Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications. Appl Microbiol Biotechnol 86:109–117 [View Article][PubMed]
    [Google Scholar]
  2. Burkholder P. R., Sun S. H., Anderson L. E., Ehrlich J. 1955; The identity of viomycin-producing cultures of Streptomyces . Bull Torrey Bot Club 82:108–117 [View Article]
    [Google Scholar]
  3. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Dornberger K., Berger U., Knöll H. 1980; Griseorubins, a new family of antibiotics with antimicrobial and antitumor activity. I. Taxonomy of the producing strain, fermentation, isolation and chemical characterization. J Antibiot (Tokyo) 33:1–8[PubMed] [CrossRef]
    [Google Scholar]
  6. Dutta D., Gachhui R. 2007; Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 57:353–357 [View Article][PubMed]
    [Google Scholar]
  7. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  8. Goodfellow M. 1971; Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69:33–80[PubMed] [CrossRef]
    [Google Scholar]
  9. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 24:54–63 [View Article]
    [Google Scholar]
  10. Gu Q., Luo H., Zheng W., Liu Z., Huang Y. 2006; Pseudonocardia oroxyli sp. nov., a novel actinomycete isolated from surface-sterilized Oroxylum indicum root. Int J Syst Evol Microbiol 56:2193–2197 [View Article][PubMed]
    [Google Scholar]
  11. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [View Article]
    [Google Scholar]
  12. Hong K., Gao A. H., Xie Q. Y., Gao H., Zhuang L., Lin H. P., Yu H. P., Li J., Yao X. S. et al. other authors 2009; Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44 [View Article][PubMed]
    [Google Scholar]
  13. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  14. Küster E. 1972; Simple working key for the classification and identification of named taxa included in the International Streptomyces Project. Int J Syst Bacteriol 22:139–148 [View Article]
    [Google Scholar]
  15. Labeda D. P. 1992; DNA-DNA hybridization in the systematics of Streptomyces . Gene 115:249–253 [View Article][PubMed]
    [Google Scholar]
  16. Lechevalier M. P., Lechevalier H. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [View Article]
    [Google Scholar]
  17. Lechevalier M. P., De Bievre C., Lechevalier H. A. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [View Article]
    [Google Scholar]
  18. Locci R. 1989; Streptomyces and related genera. In Bergey’s Manual of Systematic Bacteriology vol. 4 pp. 2451–2508 Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  21. Nye T. M. W., Liò P., Gilks W. R. 2006; A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22:117–119 [View Article][PubMed]
    [Google Scholar]
  22. Ostash B., Kozarevska I., Fedorenko V. 2005; Generation of landomycin D-producing strain Streptomyces globisporus LD3. Folia Microbiol (Praha) 50:19–23 [View Article][PubMed]
    [Google Scholar]
  23. Posada D. 2008; jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256 [View Article][PubMed]
    [Google Scholar]
  24. Praveen V., Tripathi C. K. M., Bihari V., Srivastava S. C. 2008; Production of actinomycin-D by the mutant of a new isolate of Streptomyces sindenensis . Braz J Microbiol 39:689–692 [View Article]
    [Google Scholar]
  25. Saha M., Jaisankar P., Das S., Sarkar K. K., Roy S., Besra S. E., Vedasiromani J. R., Ghosh D., Sana B., Mukherjee J. 2006; Production and purification of a bioactive substance inhibiting multiple drug resistant bacteria and human leukemia cells from a salt-tolerant marine Actinobacterium sp. isolated from the Bay of Bengal. Biotechnol Lett 28:1083–1088 [View Article][PubMed]
    [Google Scholar]
  26. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [View Article]
    [Google Scholar]
  27. Shirling E. B., Gottlieb D. 1968a; Cooperative description of type cultures of Streptomyces. II. Species descriptions from first study. Int J Syst Bacteriol 18:69–189 [View Article]
    [Google Scholar]
  28. Shirling E. B., Gottlieb D. 1968b; Cooperative description of type cultures of Streptomyces. III. Additional species descriptions from first and second studies. Int J Syst Bacteriol 18:279–392 [View Article]
    [Google Scholar]
  29. Shirling E. B., Gottlieb D. 1969; Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Int J Syst Bacteriol 19:391–512 [View Article]
    [Google Scholar]
  30. Shirling E. B., Gottlieb D. 1972; Cooperative description of type strains of Streptomyces. V. Additional description. Int J Syst Bacteriol 22:265–394 [View Article]
    [Google Scholar]
  31. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  32. Stöver B. C., Müller K. F. 2010; TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinf 11:7 [View Article]
    [Google Scholar]
  33. Swofford D. L. 2002; paup* Phylogenetic analysis using parsimony (*and other methods). Sunderland, MA: Sinauer Associates;
  34. Tresner H. D., Hayes J. A., Backus E. J. 1968; Differential tolerance of streptomycetes to sodium chloride as a taxonomic aid. Appl Microbiol 16:1134–1136[PubMed]
    [Google Scholar]
  35. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813[PubMed]
    [Google Scholar]
  36. Zaheer A., Zaheer S., Montgomery R. 1985; Proteolytic activity of largomycin. Biochim Biophys Acta 841:261–266[PubMed] [CrossRef]
    [Google Scholar]
  37. Zhou Z. H., Liu Z. H., Qian Y. D., Kim S. B., Goodfellow M. 1998; Saccharopolyspora spinosporotrichia sp. nov., a novel actinomycete from soil. Int J Syst Bacteriol 48:53–58 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.028258-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028258-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error