1887

Abstract

Endospore-forming bacteria were recovered from individual packages from different processing lines in a dairy plant during a tenacious periodical contamination of their UHT-milk production. Two colony types were seen, one of which was identified as . Analysis of the 16S rRNA gene of the second colony type placed these isolates within the genus , with as the closest known relative. Moreover, over 99 % similarity was observed to the 16S rDNA sequence of MB 2035, a strain isolated previously from raw milk during a survey at dairy farms for very heat-resistant spore-forming bacteria. Nine other potentially closely related strains among the dairy farm isolates were found using rep-PCR typing. The taxonomic positions of these 19 isolates were further investigated using 16S rRNA gene sequencing and DNA–DNA hybridizations of representative strains. All 19 isolates shared a high degree of phenotypic similarity and were easily distinguished from closely related members of the genus. Anteiso-C, C and iso-C were among the major fatty acids and the genomic DNA G+C content was 51·6–51·7 mol%. Therefore, based on their phenotypic, phylogenetic and genomic distinctiveness, these 19 strains, isolated from both raw and heat-treated milk, are placed in the genus as sp. nov. The type strain is MB 1871 (=LMG 21940=DSM 15596).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02822-0
2004-05-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540885.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02822-0&mimeType=html&fmt=ahah

References

  1. Alexander, B. & Priest, F. G. ( 1989; ). Bacillus glucanolyticus, a new species that degrades a variety of β-glucans. Int J Syst Bacteriol 39, 112–115.[CrossRef]
    [Google Scholar]
  2. Andersson, A., Ronner, U. & Granum, P. E. ( 1995; ). What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int J Food Microbiol 28, 145–155.[CrossRef]
    [Google Scholar]
  3. Ash, C., Farrow, J. A. E., Wallbanks, S. & Collins, M. D. ( 1991; ). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequence. Lett Appl Microbiol 13, 202–206.
    [Google Scholar]
  4. Ash, C., Priest, F. G. & Collins, M. D. ( 1993; ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.
    [Google Scholar]
  5. Beatty, P. H. & Jensen, S. E. ( 2002; ). Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48, 159–169.[CrossRef]
    [Google Scholar]
  6. Berge, O., Guinebretière, M.-H., Achouak, W., Normand, P. & Heulin, T. ( 2002; ). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52, 607–616.
    [Google Scholar]
  7. Chung, Y. R., Kim, C. H., Hwang, I. & Chun, J. ( 2000; ). Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50, 1495–1500.[CrossRef]
    [Google Scholar]
  8. Claus, D. & Berkeley, R. C. W. ( 1986; ). Genus Bacillus Cohn 1872, 174AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105–1139. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  9. Coenye, T., Falsen, E., Vancanneyt, M., Hoste, B., Govan, J. R. W., Kersters, K. & Vandamme, P. ( 1999; ). Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49, 405–413.[CrossRef]
    [Google Scholar]
  10. Daane, L. L., Harjono, I., Barns, S. M., Launen, L. A., Palleroni, N. J. & Häggblom, M. M. ( 2002; ). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52, 131–139.
    [Google Scholar]
  11. Elo, S., Suominen, I., Kämpfer, P., Juhanoja, J., Salkinoja-Salonen, M. & Haahtela, K. ( 2001; ). Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51, 535–545.
    [Google Scholar]
  12. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  13. Goris, J., Dejonghe, W., Falsen, E., De Clerck, E., Geeraerts, B., Willems, A., Top, E. M., Vandamme, P. & De Vos, P. ( 2002; ). Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 25, 340–352.[CrossRef]
    [Google Scholar]
  14. Grau, F. H. & Wilson, P. W. ( 1962; ). Physiology of nitrogen fixation by Bacillus polymyxa. J Bacteriol 83, 490–496.
    [Google Scholar]
  15. Guinebretière, M.-H., Berge, O., Normand, P., Morris, C., Carlin, F. & Nguyen-The, C. ( 2001; ). Identification of bacteria in pasteurized zucchini purées stored at different temperatures and comparison with those found in other pasteurized vegetable purées. Appl Environ Microbiol 67, 4520–4530.[CrossRef]
    [Google Scholar]
  16. Herman, L. M. F., Vaerewijck, M. J. M., Moermans, R. J. B. & Waes, G. M. A. V. J. ( 1997; ). Identification and detection of Bacillus sporothermodurans spores in 1, 10, and 100 milliliters of raw milk by PCR. Appl Environ Microbiol 63, 3139–3143.
    [Google Scholar]
  17. Herman, L., Heyndrickx, M. & Waes, G. ( 1998; ). Typing of Bacillus sporothermodurans and other Bacillus species isolated from milk by repetitive element sequence based PCR. Lett Appl Microbiol 26, 183–188.[CrossRef]
    [Google Scholar]
  18. Heyndrickx, M. & Scheldeman, P. ( 2002; ). Bacilli associated with spoilage in dairy and other food products. In Applications and Systematics of Bacillus and Relatives, pp. 64–82. Edited by R. Berkeley, M. Heyndrickx, N. Logan & P. De Vos. Oxford: Blackwell Science.
  19. Heyndrickx, M., Vauterin, L., Vandamme, P., Kersters, K. & De Vos, P. ( 1996; ). Applicability of combined amplified 16S rDNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J Microbiol Methods 26, 247–259.[CrossRef]
    [Google Scholar]
  20. Huemer, I., Klijn, N., Vogelsang, H. & Langeveld, L. ( 1998; ). Thermal death kinetics of spores of Bacillus sporothermodurans isolated from UHT-milk. Int Dairy J 8, 851–855.[CrossRef]
    [Google Scholar]
  21. Kanzawa, Y., Harada, A., Takeuchi, M., Yokota, A. & Harada, T. ( 1995; ). Bacillus curdlanolyticus sp. nov. and Bacillus kobensis sp. nov., which hydrolyze resistant curdlan. Int J Syst Bacteriol 45, 515–521.[CrossRef]
    [Google Scholar]
  22. Logan, N. A. & Berkeley, R. C. W. ( 1984; ). Identification of Bacillus strains using the API system. J Gen Microbiol 130, 1871–1882.
    [Google Scholar]
  23. Logan, N. A., Lebbe, L., Hoste, B. & 7 other authors ( 2000; ). Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50, 1741–1753.
    [Google Scholar]
  24. Martin, N. I., Hu, H., Moake, M. M., Churey, J. J., Whittal, R., Worobo, R. W. & Vederas, J. C. ( 2003; ). Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem 278, 13124–13132.[CrossRef]
    [Google Scholar]
  25. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  26. Pitcher, D. G., Saunders, N. A. & Owen, R. J. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef]
    [Google Scholar]
  27. Piuri, M., Sanchez-Rivas, C. & Ruzal, S. M. ( 1998; ). A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett Appl Microbiol 27, 9–13.[CrossRef]
    [Google Scholar]
  28. Raaska, L., Sillanpaa, J., Sjoberg, A. M. & Suihko, M. L. ( 2002; ). Potential microbiological hazards in the production of refined paper products for food applications. J Ind Microbiol Biotechnol 28, 225–231.[CrossRef]
    [Google Scholar]
  29. Rademaker, J. L. W., Hoste, B., Louws, F. J., Kersters, K., Swings, J., Vauterin, L., Vauterin, P. & de Bruijn, F. J. ( 2000; ). Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50, 665–677.[CrossRef]
    [Google Scholar]
  30. Scheldeman, P., Herman, L., Goris, J., De Vos, P. & Heyndrickx, M. ( 2002; ). Polymerase chain reaction identification of Bacillus sporothermodurans from dairy sources. J Appl Microbiol 92, 983–991.[CrossRef]
    [Google Scholar]
  31. Seldin, L., van Elsas, J. D. & Penido, E. G. C. ( 1984; ). Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int J Syst Bacteriol 34, 451–456.[CrossRef]
    [Google Scholar]
  32. Setlow, P. ( 1994; ). Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol Symp Suppl 76, 49S–60S.[CrossRef]
    [Google Scholar]
  33. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K. ( 1997; ). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef]
    [Google Scholar]
  34. Stackebrandt, E., Frederiksen, W., Garrity, G. M. & 10 other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  35. te Giffel, M. C., Wagendorp, A., Herrewegh, A. & Driehuis, F. ( 2002; ). Bacterial spores in silage and raw milk. Antonie van Leeuwenhoek 81, 625–630.[CrossRef]
    [Google Scholar]
  36. Vaerewijck, M. J., De Vos, P., Lebbe, L., Scheldeman, P., Hoste, B. & Heyndrickx, M. ( 2001; ). Occurrence of Bacillus sporothermodurans and other aerobic spore-forming species in feed concentrate for dairy cattle. J Appl Microbiol 91, 1074–1084.[CrossRef]
    [Google Scholar]
  37. Vancanneyt, M., Witt, S., Abraham, W. R., Kersters, K. & Fredrickson, H. L. ( 1996; ). Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19, 528–540.[CrossRef]
    [Google Scholar]
  38. Versalovic, J., Schneider, M., de Bruijn, F. J. & Lupski, J. R. ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5, 25–40.
    [Google Scholar]
  39. von der Weid, I., Duarte, G. F., van Elsas, J. D. & Seldin, L. ( 2002; ). Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52, 2147–2153.[CrossRef]
    [Google Scholar]
  40. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  41. Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., de Lajudie, P., De Vos, P. & Gillis, M. ( 2001; ). DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
  42. Witz, D. F., Detroy, R. W. & Wilson, P. W. ( 1967; ). Nitrogen fixation by growing cells and cell-free extracts of the Bacillaceae. Arch Mikrobiol 55, 369–381.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02822-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02822-0
Loading

Data & Media loading...

vol. , part 3, pp. 885 - 891

Origins of the strains used in this study.

DNA base composition and DNA relatedness among sp. nov. strains from different origins and with related species.

Extended 16S rDNA-based neighbour-joining tree showing the position of sp. nov. See legend to Fig. 2 for details.

Photomicrograph of sporangia and vegetative cells of sp. nov. MB 1871 . Bar, 4 µm.

[Single PDF file](195 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error