1887

Abstract

A novel methane-oxidizing bacterium, strain HTM55, was isolated from subsurface hot aquifer water from a Japanese gold mine. Strain HTM55 was a Gram-negative, aerobic, motile, coccoid bacterium with a single polar flagellum and the distinctive intracytoplasmic membrane arrangement of a type I methanotroph. Strain HTM55 was a moderately thermophilic, obligate methanotroph that grew on methane and methanol at 37–65 °C (optimum 55–60 °C). The isolate grew at pH 5.2–7.5 (optimum 5.8–6.3) and with 0–1 % NaCl (optimum 0–0.3 %). The ribulose monophosphate pathway was operative for carbon assimilation. The DNA G+C content was 54.4 mol% and the major fatty acids were C (52.0 %) and Cω7 (34.8 %). Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain HTM55 was closely related to MYHT (99.2 % 16S rRNA gene sequence similarity), which is within the class . However, DNA–DNA relatedness between strain HTM55 and MYHT was ≤39 %. On the basis of distinct phylogenetic, chemotaxonomic and physiological characteristics, strain HTM55 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HTM55 ( = JCM 13664 = DSM 19750).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028092-0
2011-11-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2646.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028092-0&mimeType=html&fmt=ahah

References

  1. Alfreider A., Vogt C., Hoffmann D., Babel W.. ( 2003;). Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms. . Microb Ecol 45:, 317–328. [CrossRef][PubMed]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. ( 1979;). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43:, 260–296.[PubMed]
    [Google Scholar]
  3. Bodrossy L., Holmes E. M., Holmes A. J., Kovács K. L., Murrell J. C.. ( 1997;). Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov.. Arch Microbiol 168:, 493–503. [CrossRef][PubMed]
    [Google Scholar]
  4. Bodrossy L., Kovács K. L., McDonald I. R., Murrell J. C.. ( 1999;). A novel thermophilic methane-oxidising γ-Proteobacterium. . FEMS Microbiol Lett 170:, 335–341.
    [Google Scholar]
  5. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C.. ( 1993;). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. . Int J Syst Bacteriol 43:, 735–753. [CrossRef]
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Stackebrandt E.. ( 1995;). The phylogenetic position of the family Methylococcaceae. . Int J Syst Bacteriol 45:, 182–185. [CrossRef][PubMed]
    [Google Scholar]
  7. Bowman J. P., McCammon S. A., Skerratt J. H.. ( 1997;). Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. . Microbiology 143:, 1451–1459. [CrossRef][PubMed]
    [Google Scholar]
  8. Csáki R., Bodrossy L., Klem J., Murrell J. C., Kovács K. L.. ( 2003;). Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. . Microbiology 149:, 1785–1795. [CrossRef][PubMed]
    [Google Scholar]
  9. Dedysh S. N., Belova S. E., Bodelier P. L. E., Smirnova K. V., Khmelenina V. N., Chidthaisong A., Trotsenko Y. A., Liesack W., Dunfield P. F.. ( 2007;). Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. . Int J Syst Evol Microbiol 57:, 472–479. [CrossRef][PubMed]
    [Google Scholar]
  10. Elsaied H., Naganuma T.. ( 2001;). Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. . Appl Environ Microbiol 67:, 1751–1765. [CrossRef][PubMed]
    [Google Scholar]
  11. Eshinimaev B. Ts., Medvedkova K. A., Khmelenina V. N., Suzina N. E., Osipov G. A., Lysenko A. M., Trotsenko IuA.. ( 2004;). New thermophilic methanotrophs of the genus Methylocaldum. . Mikrobiologiia 73:, 530–539 (in Russian).[PubMed]
    [Google Scholar]
  12. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  13. Heyer J., Berger U., Hardt M., Dunfield P. F.. ( 2005;). Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. . Int J Syst Evol Microbiol 55:, 1817–1826. [CrossRef][PubMed]
    [Google Scholar]
  14. Hirayama H., Takai K., Inagaki F., Nealson K. H., Horikoshi K.. ( 2005a;). Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer. . Int J Syst Evol Microbiol 55:, 467–472. [CrossRef][PubMed]
    [Google Scholar]
  15. Hirayama H., Takai K., Inagaki F., Yamato Y., Suzuki M., Nealson K. H., Horikoshi K.. ( 2005b;). Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine. . Extremophiles 9:, 169–184. [CrossRef][PubMed]
    [Google Scholar]
  16. Hirayama H., Sunamura M., Takai K., Nunoura T., Noguchi T., Oida H., Furushima Y., Yamamoto H., Oomori T., Horikoshi K.. ( 2007;). Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. . Appl Environ Microbiol 73:, 7642–7656. [CrossRef][PubMed]
    [Google Scholar]
  17. Inagaki F., Takai K., Hirayama H., Yamato Y., Nealson K. H., Horikoshi K.. ( 2003;). Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. . Extremophiles 7:, 307–317. [CrossRef][PubMed]
    [Google Scholar]
  18. Kalyuzhnaya M. G., Stolyar S. M., Auman A. J., Lara J. C., Lidstrom M. E., Chistoserdova L.. ( 2005;). Methylosarcina lacus sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. . Int J Syst Evol Microbiol 55:, 2345–2350. [CrossRef][PubMed]
    [Google Scholar]
  19. Large P. J., Quayle J. R.. ( 1963;). Microbial growth on C1 compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. . Biochem J 87:, 386–396.[PubMed]
    [Google Scholar]
  20. Maeda N., Kanai T., Atomi H., Imanaka T.. ( 2002;). The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability. . J Biol Chem 277:, 31656–31662. [CrossRef][PubMed]
    [Google Scholar]
  21. McDonald I. R., Kenna E. M., Murrell J. C.. ( 1995;). Detection of methanotrophic bacteria in environmental samples with the PCR. . Appl Environ Microbiol 61:, 116–121.[PubMed]
    [Google Scholar]
  22. Mehta M. P., Butterfield D. A., Baross J. A.. ( 2003;). Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. . Appl Environ Microbiol 69:, 960–970. [CrossRef][PubMed]
    [Google Scholar]
  23. Miguez C. B., Bourque D., Sealy J. A., Greer C. W., Groleau D.. ( 1997;). Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). . Microb Ecol 33:, 21–31. [CrossRef][PubMed]
    [Google Scholar]
  24. Nanba K., King G. M., Dunfield K.. ( 2004;). Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. . Appl Environ Microbiol 70:, 2245–2253. [CrossRef][PubMed]
    [Google Scholar]
  25. Nash T.. ( 1953;). The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. . Biochem J 55:, 416–421.[PubMed]
    [Google Scholar]
  26. Op den Camp H. J. M., Islam T., Stott M. B., Harhangi H. R., Hynes A., Schouten S., Jetten M. S. M., Birkeland N.-K., Pol A., Dunfield P. F.. ( 2009;). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. . Environ Microbiol Rep 1:, 293–306. [CrossRef]
    [Google Scholar]
  27. Rahalkar M., Bussmann I., Schink B.. ( 2007;). Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. . Int J Syst Evol Microbiol 57:, 1073–1080. [CrossRef][PubMed]
    [Google Scholar]
  28. Takai K., Hirayama H., Sakihama Y., Inagaki F., Yamato Y., Horikoshi K.. ( 2002;). Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. . Appl Environ Microbiol 68:, 3046–3054. [CrossRef][PubMed]
    [Google Scholar]
  29. Takai K., Kobayashi H., Nealson K. H., Horikoshi K.. ( 2003;). Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. . Int J Syst Evol Microbiol 53:, 823–827. [CrossRef][PubMed]
    [Google Scholar]
  30. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  31. Tsubota J., Eshinimaev B. Ts., Khmelenina V. N., Trotsenko Y. A.. ( 2005;). Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. . Int J Syst Evol Microbiol 55:, 1877–1884. [CrossRef][PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  33. Zehr J. P., McReynolds L. A.. ( 1989;). Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. . Appl Environ Microbiol 55:, 2522–2526.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028092-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028092-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2646 - 2653

Alignment of deduced amino acid sequences from partial (approximately 360 bp) sequences, between the primer sites of A189 (Holmes , 1995) and mb661 (Costello & Lidstrom, 1999).

Cellular fatty acid compositions of sp. nov. HTM55 and the related type I methanotrophs.

Sequence similarities of the partial and the deduced PmoA sequences between sp. nov. HTM55 and various proteobacterial methanotrophs.

[ Combined PDF] 209 KB



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error