1887

Abstract

A Gram-positive, yellow-pigmented, actinobacterial strain, DW152, was isolated from a dairy industry effluent treatment plant. 16S rRNA gene sequence analysis indicated that strain DW152 exhibited low similarity with many species with validly published names belonging to the genera and . However, phenotypic properties including chemotaxonomic markers affiliated strain DW152 to the genus . Strain DW152 had ai-C and i-C as major cellular fatty acids, and MK-8(H) as the major menaquinone. The cell-wall peptidoglycan of strain DW152 had -lysine as the diagnostic amino acid and the type was A4α. The DNA G+C content of strain DW152 was 68.0 mol%. In 16S rRNA gene sequence analysis, strain DW152 exhibited significant similarity with NBRC 104258, but the mean value of DNA–DNA relatedness between these strains was only 42.3 %. Moreover, strain DW152 differed in biochemical and chemotaxonomic characteristics from and other species of the genus . Based on the above differences, we conclude that strain DW152 should be treated as a novel species of the genus , for which the name sp. nov. is proposed. The type strain of sp. nov. is DW152 ( = MTCC10523  = DSM 23694).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028043-0
2011-12-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/12/2832.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028043-0&mimeType=html&fmt=ahah

References

  1. Chen H.-H., Zhao G.-Z., Park D.-J., Zhang Y.-Q., Xu L.-H., Lee J.-C., Kim C.-J., Li W.-J.. ( 2009;). Micrococcus endophyticus sp. nov., isolated from surface-sterilized Aquilaria sinensis roots. . Int J Syst Evol Microbiol 59:, 1070–1075. [CrossRef][PubMed]
    [Google Scholar]
  2. Cohn F.. ( 1872;). Untersuchungen über Bakterien. . Beitr Biol Pflanz 1:, 127–224 (in German).
    [Google Scholar]
  3. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  4. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  5. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  6. Lanyi B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  7. Liu H., Xu Y., Ma Y., Zhou P.. ( 2000;). Characterization of Micrococcus antarcticus sp. nov., a psychrophilic bacterium from Antarctica. . Int J Syst Evol Microbiol 50:, 715–719. [CrossRef][PubMed]
    [Google Scholar]
  8. Liu X.-Y., Wang B.-J., Jiang C.-Y., Liu S.-J.. ( 2007;). Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor. . Int J Syst Evol Microbiol 57:, 66–69. [CrossRef][PubMed]
    [Google Scholar]
  9. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  10. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  11. Pandey K. K., Mayilraj S., Chakrabarti T.. ( 2002;). Pseudomonas indica sp. nov., a novel butane-utilizing species. . Int J Syst Evol Microbiol 52:, 1559–1567. [CrossRef][PubMed]
    [Google Scholar]
  12. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical note 101.. Newark, DE:: MIDI Inc.;
  13. Sato N. S., Murata N.. ( 1988;). Membrane lipids. . Methods Enzymol 167:, 251–259.
    [Google Scholar]
  14. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  15. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  17. Stackebrandt E., Koch C., Gvozdiak O., Schumann P.. ( 1995;). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend.. Int J Syst Bacteriol 45:, 682–692. [CrossRef][PubMed]
    [Google Scholar]
  18. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol 47:, 479–491. [CrossRef]
    [Google Scholar]
  19. Suresh K., Mayilraj S., Chakrabarti T.. ( 2006;). Effluviibacter roseus gen. nov., sp. nov., isolated from muddy water, belonging to the family ‘Flexibacteraceae’. . Int J Syst Evol Microbiol 56:, 1703–1707. [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  21. Wieser M., Denner E. B. M., Kämpfer P., Schumann P., Tindall B., Steiner U., Vybiral D., Lubitz W., Maszenan A. M. et al. & other authors ( 2002;). Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). . Int J Syst Evol Microbiol 52:, 629–637.[PubMed]
    [Google Scholar]
  22. Zhang J.-Y., Liu X.-Y., Liu S.-J.. ( 2010;). Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 60:, 1897–1903. [CrossRef][PubMed]
    [Google Scholar]
  23. Zhao G.-Z., Li J., Qin S., Zhang Y.-Q., Zhu W.-Y., Jiang C.-L., Xu L.-H., Li W.-J.. ( 2009;). Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. . Int J Syst Evol Microbiol 59:, 2383–2387. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028043-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028043-0
Loading

Data & Media loading...

Supplements

Phase-contrast microscope image of cells of strain DW152 .

IMAGE

Polar lipid analysis of strain DW152 and NBRC 104258 . a) Two dimensional TLC for detection of phospholipids. b) Total polar lipid profile on one dimensional TLC. Strains were grown in nutrient broth at 30 °C for 48 h. Polar lipids were analysed as described by Minnikin (1984) using TLC silica gel 60 F254 (Merck). DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PI, phosphatidylinositol; PC phosphatidylcholine; UL, unknown phospholipid; GL1–3, unknown glycolipids.

IMAGE



IMAGE

Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences showing the relationship of strain DW152 with members of the family . Numbers at nodes are bootstrap values >50 %. CCUG 31996 was used as an out group. Bar, 0.01 substitutions per nucleotide position. [ PDF] (147 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error