1887

Abstract

To assess the physiological and phylogenetic diversity of culturable halophilic bacteria in deep-sea hydrothermal-vent environments, six isolates obtained from low-temperature hydrothermal fluids, sulfide rock and hydrothermal plumes in North and South Pacific Ocean vent fields located at 1530–2580 m depth were fully characterized. Three strains were isolated on media that contained oligotrophic concentrations of organic carbon (0·002 % yeast extract). Sequencing of the 16S rRNA gene indicated that all strains belonged to the genus in the -subclass of the . Consistent with previously described species, the novel strains were slightly to moderately halophilic and grew in media containing up to 22–27 % total salts. The isolates grew at temperatures as low as −1 to 2 °C and had temperature optima of 30 or 20–35 °C. Both the minimum and optimum temperatures for growth were similar to those of Antarctic and sea-ice species and lower than typically observed for the genus as a whole. Phenotypic tests revealed that the isolates were physiologically versatile and tended to have more traits in common with each other than with closely related species, presumably a reflection of their common deep-sea, hydrothermal-vent habitat of origin. The G+C content of the DNA for all strains was 56·0–57·6 mol%, and DNA–DNA hybridization experiments revealed that four strains (Eplume1, Esulfide1, Althf1 and Slthf2) represented novel species and that two strains (Eplume2 and Slthf1) were related to . The proposed new species names are (type strain Eplume1=ATCC BAA-805=CECT 5815=DSM 15720), (type strain Esulfide1=ATCC BAA-803=CECT 5817=DSM 15722), (type strain Althf1=ATCC BAA-802=CECT 5812=DSM 15723) and (type strain Slthf2=ATCC BAA-800=CECT 5814=DSM 15725).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02799-0
2004-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540499.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02799-0&mimeType=html&fmt=ahah

References

  1. Adkins, J. P., Madigan, M. T., Mandelco, L., Woese, C. R. & Tanner, R. S. ( 1993; ). Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic, halophilic bacterium isolated from a subterranean brine. Int J Syst Bacteriol 43, 514–520.[CrossRef]
    [Google Scholar]
  2. Arahal, D. R., Castillo, A. M., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002a; ). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25, 207–211.[CrossRef]
    [Google Scholar]
  3. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002b; ). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249.
    [Google Scholar]
  4. Balch, W. E. & Wolfe, R. S. ( 1976; ). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32, 781–791.
    [Google Scholar]
  5. Baross, J. A. ( 1993; ). Isolation and cultivation of hyperthermophilic bacteria from marine and freshwater habitats. In Handbook of Methods in Aquatic Microbial Ecology, pp. 21–30. Edited by P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole. Boca Raton, FL: Lewis Publishers.
  6. Bartlett, D. H. ( 2002; ). Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595, 367–381.[CrossRef]
    [Google Scholar]
  7. Baumann, P., Baumann, L. & Mandel, M. ( 1971; ). Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol 107, 268–294.
    [Google Scholar]
  8. Baumann, L., Baumann, P., Mandel, M. & Allen, R. D. ( 1972; ). Taxonomy of aerobic marine eubacteria. J Bacteriol 110, 402–429.
    [Google Scholar]
  9. Baumann, L., Bowditch, R. D. & Baumann, P. ( 1983; ). Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina. Int J Syst Bacteriol 33, 793–802.[CrossRef]
    [Google Scholar]
  10. Bouchotroch, S., Quesada, E., del Moral, A., Llamas, I. & Béjar, V. ( 2001; ). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51, 1625–1632.[CrossRef]
    [Google Scholar]
  11. Bowman, J. P., McCammon, S. A., Brown, M. V., Nichols, D. S. & McMeekin, T. A. ( 1997; ). Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63, 3068–3078.
    [Google Scholar]
  12. Butterfield, D. A. & Massoth, G. J. ( 1994; ). Geochemistry of north Cleft vent fluids: temporal changes in chlorinity and their possible relation to recent volcanism. J Geophys Res 99, 4951–4968.[CrossRef]
    [Google Scholar]
  13. Butterfield, D. A., Jonasson, I. R., Massoth, G. J. & 7 other authors ( 1997; ). Seafloor eruptions and evolution of hydrothermal fluid chemistry. Philos Trans R Soc Lond A 355, 369–386.[CrossRef]
    [Google Scholar]
  14. Cooper, M. J., Elderfield, H. & Schultz, A. ( 2000; ). Diffuse hydrothermal fluids from Lucky Strike hydrothermal vent field: evidence for a shallow conductively heated system. J Geophys Res 105, 19369–19375.[CrossRef]
    [Google Scholar]
  15. De Ley, J. & Tijtgat, R. ( 1970; ). Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36, 461–474.[CrossRef]
    [Google Scholar]
  16. DeLong, E. F., Franks, D. G. & Yayanos, A. A. ( 1997; ). Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63, 2105–2108.
    [Google Scholar]
  17. Dobson, S. J., McMeekin, T. A. & Franzmann, P. D. ( 1993; ). Phylogenetic relationships between some members of the genera Deleya, Halomonas, and Halovibrio. Int J Syst Bacteriol 43, 665–673.[CrossRef]
    [Google Scholar]
  18. Duckworth, A. W., Grant, W. D., Jones, B. E. & van Steenbergen, R. ( 1996; ). Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19, 181–191.[CrossRef]
    [Google Scholar]
  19. Duckworth, A. W., Grant, W. D., Jones, B. E., Meijer, D., Márquez, M. C. & Ventosa, A. ( 2000; ). Halomonas magadii sp. nov., a new member of the genus Halomonas, isolated from a soda lake of the East African Rift Valley. Extremophiles 4, 53–60.
    [Google Scholar]
  20. Fendrich, C. ( 1988; ). Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid Eubacterium from Great Salt Lake, Utah, USA. Syst Appl Microbiol 11, 36–43.[CrossRef]
    [Google Scholar]
  21. Fendrich, C. & Schink, B. ( 1988; ). Degradation of glucose, glycerol and acetate by aerobic bacteria in surface water of Great Salt Lake, Utah, USA. Syst Appl Microbiol 11, 94–96.[CrossRef]
    [Google Scholar]
  22. Forsyth, M. P., Shindler, D. B., Gochnauer, M. B. & Kushner, D. J. ( 1971; ). Salt tolerance of intertidal marine bacteria. Can J Microbiol 17, 825–828.[CrossRef]
    [Google Scholar]
  23. Franzmann, P. D., Burton, H. R. & McMeekin, T. A. ( 1987a; ). Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol 37, 27–34.[CrossRef]
    [Google Scholar]
  24. Franzmann, P. D., Deprez, P. P., Burton, H. R. & van den Hoff, J. ( 1987b; ). Limnology of Organic Lake, Antarctica, a meromictic lake that contains high concentrations of dimethyl sulfide. Aust J Mar Freshw Res 38, 409–417.[CrossRef]
    [Google Scholar]
  25. García, M. T., Ventosa, A., Ruiz-Berraquero, F. & Kocur, M. ( 1987; ). Taxonomic study and amended description of Vibrio costicola. Int J Syst Bacteriol 37, 251–256.[CrossRef]
    [Google Scholar]
  26. Greenberg, A. E., Clescen, L. S. & Eaton, A. D. ( 1992; ). Standard Methods for the Examination of Water and Wastewater, 18th edn. Washington, DC: American Public Health Association.
  27. Heyrman, J., Balcaen, A., De Vos, P. & Swings, J. ( 2002; ). Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 52, 2049–2054.[CrossRef]
    [Google Scholar]
  28. Huber, J. A., Butterfield, D. A. & Baross, J. A. ( 2003; ). Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43, 393–409.[CrossRef]
    [Google Scholar]
  29. James, S. R., Dobson, S. J., Franzmann, P. D. & McMeekin, T. A. ( 1990; ). Halomonas meridiana, a new species of extremely halotolerant bacteria isolated from Antarctic saline lakes. Syst Appl Microbiol 13, 270–278.[CrossRef]
    [Google Scholar]
  30. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  31. Karl, D. M. ( 1995; ). Ecology of free-living, hydrothermal vent microbial communities. In The Microbiology of Deep-Sea Hydrothermal Vents, pp. 35–124. Edited by D. M. Karl. Boca Raton, FL: CRC Press.
  32. Kato, C. & Nogi, Y. ( 2001; ). Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35, 223–230.[CrossRef]
    [Google Scholar]
  33. Kaye, J. Z. & Baross, J. A. ( 2000; ). High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol Ecol 32, 249–260.[CrossRef]
    [Google Scholar]
  34. Koschinsky, A., Seifert, R., Halbach, P., Bau, M., Brasse, S., de Carvalho, L. M. & Fonseca, N. M. ( 2002; ). Geochemistry of diffuse low-temperature hydrothermal fluids in the North Fiji basin. Geochim Cosmochim Acta 66, 1409–1427.[CrossRef]
    [Google Scholar]
  35. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  36. Lilley, M. D., Feely, R. A. & Trefry, J. H. ( 1995; ). Chemical and biochemical transformations in hydrothermal plumes. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, pp. 369–391. Edited by S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux & R. E. Thomson. Washington, DC: American Geophysical Union.
  37. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  38. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  39. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  40. McMeekin, T. A. & Franzmann, P. D. ( 1988; ). Effect of temperature on the growth rates of halotolerant and halophilic bacteria isolated from Antarctic saline lakes. Polar Biol 8, 281–285.[CrossRef]
    [Google Scholar]
  41. Mehta, M. P., Butterfield, D. A. & Baross, J. A. ( 2003; ). Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol 69, 960–970.[CrossRef]
    [Google Scholar]
  42. Mormile, M. R., Romine, M. F., García, M. T., Ventosa, A., Bailey, T. J. & Peyton, B. M. ( 1999; ). Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22, 551–558.[CrossRef]
    [Google Scholar]
  43. Nieto, J. J., Fernández-Castillo, R., Márquez, M. C., Ventosa, A., Quesada, E. & Ruiz-Berraquero, F. ( 1989; ). Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55, 2385–2390.
    [Google Scholar]
  44. Okamoto, T., Fujioka, K. & Naganuma, T. ( 2001; ). Phylogenetic similarity of aerobic gram-negative halophilic bacteria from a deep-sea hydrothermal mound and Antarctic habitats. Polar Biosci 14, 1–9.
    [Google Scholar]
  45. Owen, R. J. & Hill, L. R. ( 1979; ). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, pp. 217–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  46. Owen, R. J. & Pitcher, D. ( 1985; ). Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In Chemical Methods in Bacterial Systematics, pp. 67–93. Edited by M. Goodfellow & E. Minnikin. London: Academic Press.
  47. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  48. Pledger, R. J. & Baross, J. A. ( 1991; ). Preliminary description and nutritional characterization of a chemoorganotrophic archaeobacterium growing at temperatures of up to 110 °C isolated from a submarine hydrothermal vent environment. J Gen Microbiol 137, 203–211.[CrossRef]
    [Google Scholar]
  49. Porter, K. G. & Feig, Y. S. ( 1980; ). The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25, 943–948.[CrossRef]
    [Google Scholar]
  50. Quesada, E., Ventosa, A., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1984; ). Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34, 287–292.[CrossRef]
    [Google Scholar]
  51. Reddy, G. S. N., Raghavan, P. U. M., Sarita, N. B., Prakash, J. S. S., Nagesh, N., Delille, D. & Shivaji, S. ( 2003; ). Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 7, 55–61.
    [Google Scholar]
  52. Romanenko, L. A., Schumann, P., Rohde, M., Mikhailov, V. V. & Stackebrandt, E. ( 2002; ). Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. Int J Syst Evol Microbiol 52, 1767–1772.[CrossRef]
    [Google Scholar]
  53. Rosenberg, A. ( 1983; ). Pseudomonas halodurans sp. nov., a halotolerant bacterium. Arch Microbiol 136, 117–123.[CrossRef]
    [Google Scholar]
  54. Satomi, M., Kimura, B., Takahashi, G. & Fujii, T. ( 1997; ). Microbial diversity in kusaya gravy. Fish Sci 63, 1019–1023.
    [Google Scholar]
  55. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. ( 2002; ). tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.[CrossRef]
    [Google Scholar]
  56. Smibert, R. M. & Krieg, N. R. ( 1994; ). Systematics: phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  57. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964–969.[CrossRef]
    [Google Scholar]
  58. Takai, K., Komatsu, T., Inagaki, F. & Horikoshi, K. ( 2001; ). Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67, 3618–3629.[CrossRef]
    [Google Scholar]
  59. Takami, H., Kobata, K., Nagahama, T., Kobayashi, H., Inoue, A. & Horikoshi, K. ( 1999; ). Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3, 97–102.[CrossRef]
    [Google Scholar]
  60. Valderrama, M. J., Quesada, E., Béjar, V., Ventosa, A., Gutierrez, M. C., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1991; ). Deleya salina sp. nov., a moderately halophilic Gram-negative bacterium. Int J Syst Bacteriol 41, 377–384.[CrossRef]
    [Google Scholar]
  61. Ventosa, A., Quesada, E., Rodríguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968.
    [Google Scholar]
  62. Ventosa, A., Rodríguez-Valera, F., Poindexter, J. S. & Reznikoff, W. S. ( 1984; ). Selection for moderately halophilic bacteria by gradual salinity increases. Can J Microbiol 30, 1279–1282.[CrossRef]
    [Google Scholar]
  63. Ventosa, A., Nieto, J. J. & Oren, A. ( 1998; ). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504–544.
    [Google Scholar]
  64. Von Damm, K. L. ( 1995; ). Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, pp. 222–247. Edited by S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux & R. E. Thomson. Washington, DC: American Geophysical Union.
  65. Von Damm, K. L., Edmond, J. M., Grant, B., Measures, C. I., Walden, B. & Weiss, R. F. ( 1985; ). Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim Cosmochim Acta 49, 2197–2220.[CrossRef]
    [Google Scholar]
  66. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E. ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef]
    [Google Scholar]
  67. Yoon, J.-H., Choi, S. H., Lee, K.-C., Kho, Y. H., Kang, K. H. & Park, Y.-H. ( 2001; ). Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 51, 1171–1177.[CrossRef]
    [Google Scholar]
  68. Yoon, J.-H., Lee, K.-C., Kho, Y. H., Kang, K. H., Kim, C.-J. & Park, Y.-H. ( 2002; ). Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52, 123–130.
    [Google Scholar]
  69. ZoBell, C. E. & Upham, H. C. ( 1944; ). A list of marine bacteria including descriptions of sixty new species. Bull Scripps Inst Oceanogr 5, 239–292.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02799-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02799-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 499 - 511

Growth rates (µ) at different temperatures and salt concentrations for strains Eplume1 , Eplume2, Esulfide1 , Althf1 , Slthf1 and Slthf2 .

Transmission electron micrographs of strains Eplume1 (A), Esulfide1 (B), Althf1 (C) and Slthf2 (D). Bars, 0·2 µm.

Maximum-likelihood 16S rRNA gene phylogeny of novel isolates (Eplume1 , Eplume2, Esulfide1 , Althf1 , Slthf1 and Slthf2 ) and previously described ( ), ( ), ( ) and ( ) species with accession numbers in parentheses. Quartet-puzzling support values are shown at branch points. was used as the outgroup. Bar, 0·1 nucleotide changes per site.

[Single PDF of Figs I-III](2480 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error