1887

Abstract

Five hydrogen-oxidizing, thermophilic, strictly chemolithoautotrophic, microaerophilic strains, with similar (99–100 %) 16S rRNA gene sequences were isolated from terrestrial hot springs at Furnas, São Miguel Island, Azores, Portugal. The strain, designated Az-Fu1, was characterized. The motile, 0·9–2·0 μm rods were Gram-negative and non-sporulating. The temperature growth range was from 50 to 73 °C (optimum at 68 °C). The strains grew fastest in 0·1 % (w/v) NaCl and at pH 6, although growth was observed from pH 5·5 to 7·0. Az-Fu1 can use elemental sulfur, sulfite, thiosulfate, ferrous iron or hydrogen as electron donors, and oxygen (0·2–9·0 %, v/v) as electron acceptor. Az-Fu1 is also able to grow anaerobically, with elemental sulfur, arsenate and ferric iron as electron acceptors. The Az-Fu1 G+C content was 33·6 mol%. Maximum-likelihood analysis of the 16S rRNA phylogeny placed the isolate in a distinct lineage within the , closely related to (2·0 % distant). The 16S rRNA gene of Az-Fu1 is 7·7 % different from that of and 6·8 % different from . Based on the phenotypic and phylogenetic characteristics presented here, it is proposed that Az-Fu1 belongs to the recently described genus . It is further proposed that Az-Fu1 represents a new species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02790-0
2004-01-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540033.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02790-0&mimeType=html&fmt=ahah

References

  1. Aragno, M. ( 1992; ). Thermophilic, aerobic, hydrogen-oxidizing (knallgas) bacteria. In The Prokaryotes, vol. IV, 2nd edn, pp. 3917–3933. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  2. Beffa, T., Blanc, M. & Aragno, M. ( 1996; ). Obligately and facultatively autotrophic, sulphur- and hydrogen-oxidizing thermophilic bacteria isolated from hot composts. Arch Microbiol 165, 34–40.[CrossRef]
    [Google Scholar]
  3. Beveridge, T. J., Popkin, T. J. & Cole, R. C. ( 1994; ). Electron microscopy. In Methods for General and Molecular Bacteriology, pp. 42–71. Edited by P. Gerhardt. Washington, DC: American Society for Microbiology.
  4. Bonjour, F. & Aragno, M. ( 1986; ). Growth of thermophilic, obligatorily chemolithoautotrophic hydrogen-oxidizing bacteria related to Hydrogenobacter with thiosulfate and elemental sulfur as electron and energy source. FEMS Microbiol Lett 35, 11–15.[CrossRef]
    [Google Scholar]
  5. Boone, D. R., Johnson, R. L. & Liu, Y. ( 1989; ). Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implication in the measurement of K m for H2 or formate uptake. Appl Environ Microbiol 55, 1735–1741.
    [Google Scholar]
  6. Burggraf, S., Olsen, G. J., Stetter, K. O. & Woese, C. R. ( 1992; ). A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15, 352–356.[CrossRef]
    [Google Scholar]
  7. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  8. Deckert, G., Warren, P. V., Gaasterland, T. & 12 other authors ( 1998; ). The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353–358.[CrossRef]
    [Google Scholar]
  9. Eder, W. & Huber, R. ( 2002; ). New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6, 309–318.[CrossRef]
    [Google Scholar]
  10. Ferguson, T. J. & Mah, R. A. ( 1983; ). Isolation and characterization of an H2-oxidizing methanogen. Appl Environ Microbiol 45, 265–274.
    [Google Scholar]
  11. Götz, D., Banta, A., Beveridge, T. J., Rushdi, A. I., Simoneit, B. R. T. & Reysenbach, A.-L. ( 2002; ). Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel thermophilic hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52, 1349–1359.[CrossRef]
    [Google Scholar]
  12. Hjörleifsdottir, S., Skirnisdottir, S., Hreggvidsson, G. O., Holst, O. & Kristjansson, J. K. ( 2001; ). Species composition of cultivated and noncultivated bacteria from short filaments in an Icelandic hot spring at 88 °C. Microb Ecol 42, 117–125.
    [Google Scholar]
  13. Huber, R., Wilharm, T., Huber, D. & 7 other authors ( 1992; ). Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15, 340–351.[CrossRef]
    [Google Scholar]
  14. Huber, R., Eder, W., Heldwein, S., Wanner, G., Huber, H., Rachel, R. & Stetter, K. O. ( 1998; ). Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64, 3576–3583.
    [Google Scholar]
  15. Jones, T. G., Gardener, S. & Simon, B. M. ( 1983; ). Bacterial reduction of ferric iron in a stratified eutrophic lake. J Gen Microbiol 129, 131–139.
    [Google Scholar]
  16. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  17. Kawasumi, T., Igarashi, Y., Kodama, T. & Minoda, Y. ( 1984; ). Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34, 5–10.[CrossRef]
    [Google Scholar]
  18. Kristjansson, J. K., Ingason, A. & Alfredsson, G. A. ( 1985; ). Isolation of thermophilic obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus from Icelandic hot springs. Arch Microbiol 140, 321–325.[CrossRef]
    [Google Scholar]
  19. Kryukov, V. R., Saveleva, N. D. & Pusheva, M. A. ( 1983; ). Calderobacterium hydrogenophilum, nov. gen., nov. sp., an extremely thermophilic hydrogen bacterium and its hydrogenase activity. Mikrobiologiya 52, 781–788 (in Russian).
    [Google Scholar]
  20. Masaharu, I., Yasuo, I. & Tohru, K. ( 1987; ). Colony formation of Hydrogenobacter thermophilus on a plate solidified with gelrite. Agric Biol Chem 51, 3139–3141.[CrossRef]
    [Google Scholar]
  21. Mesbah, M., Premachandran, U. & Whitman, W. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  22. Nishihara, H., Igarashi, Y. & Kodama, T. ( 1990; ). A new isolate of Hydrogenobacter, an obligately chemolithotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot spring. Arch Microbiol 153, 294–298.[CrossRef]
    [Google Scholar]
  23. Okada, Y., Wachi, M., Hirata, A., Suzuki, K., Nagai, K. & Matsuhashi, M. ( 1994; ). Cytoplasmic axial filaments in Escherichia coli cells: possible function in the mechanism of chromosome segregation and cell division. J Bacteriol 176, 917–922.
    [Google Scholar]
  24. Pitulle, C., Yang, Y., Marchiani, M., Moore, E. R. B., Siefert, J. L., Aragno, M., Jurtshuk, P. & Fox, G. E. ( 1994; ). Phylogenetic position of the genus Hydrogenobacter. Int J Syst Bacteriol 44, 620–626.[CrossRef]
    [Google Scholar]
  25. Ratkowsky, D. A., Olley, J., McMeekin, T. A. & Ball, A. ( 1982; ). Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149, 1–5.
    [Google Scholar]
  26. Reysenbach, A.-L., Banta, A., Boone, D. R., Cary, S. C. & Luther, G. W. ( 2000a; ). Microbial essentials at hydrothermal vents. Nature 404, 835–836.[CrossRef]
    [Google Scholar]
  27. Reysenbach, A.-L., Ehringer, M. & Hershberger, K. ( 2000b; ). Microbial diversity at 83 °C in Calcite Springs, Yellowstone National Park: another environment where Aquificales and ‘Korarchaeota’ coexist. Extremophiles 4, 61–67.
    [Google Scholar]
  28. Reysenbach, A.-L., Götz, D. & Yernool, D. ( 2002a; ). Microbial diversity of marine and terrestrial thermal springs. In Biodiversity of Microbial Life, pp. 394–396. Edited by J. T. Staley & A.-L. Reysenbach. New York: Wiley-Liss.
  29. Reysenbach, A.-L., Götz, D., Banta, A., Jeanthon, C. & Fouquet, I. ( 2002b; ). Expanding the distribution of the Aquificales to the deep-sea vents on Mid-Atlantic Ridge and Central Indian Ridge. Cah Biol Mar 43, 425–428.
    [Google Scholar]
  30. Saveleva, N. D., Kryukov, V. R. & Pusheva, M. A. ( 1982; ). An obligate thermophilic hydrogen bacterium. Mikrobiologiya 51, 765–769 (in Russian).
    [Google Scholar]
  31. Shima, S. & Suzuki, K. I. ( 1993; ). Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth. Int J Syst Bacteriol 43, 703–708.[CrossRef]
    [Google Scholar]
  32. Skirnisdottir, S., Hreggvidsson, G. O., Hjörleifsdottir, S., Marteinsson, V. T., Petursdottir, S. K., Holst, O. & Kristjansson, J. ( 2000; ). Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66, 2835–2841.[CrossRef]
    [Google Scholar]
  33. Stöhr, R., Waberski, A., Völker, H., Tindall, B. J. & Thomm, M. ( 2001; ). Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51, 1853–1862.[CrossRef]
    [Google Scholar]
  34. Takai, K., Hirayama, H., Sakihama, Y., Inagaki, F., Yamato, Y. & Horikoshi, K. ( 2002; ). Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68, 3046–3054.[CrossRef]
    [Google Scholar]
  35. Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003; ). Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53, 823–827.[CrossRef]
    [Google Scholar]
  36. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  37. Wilson, D. R. & Beveridge, T. J. ( 1993; ). Bacterial flagellar filaments and their component flagellins. Can J Microbiol 39, 451–472.[CrossRef]
    [Google Scholar]
  38. Yamamoto, H., Hiraishi, A., Kato, K., Chiura, H. X., Maki, Y. & Shimuzu, A. ( 1998; ). Phylogenetic evidence for the existence of novel thermophilic bacteria in hot springs sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64, 1680–1687.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02790-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02790-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error