1887

Abstract

Five hydrogen-oxidizing, thermophilic, strictly chemolithoautotrophic, microaerophilic strains, with similar (99–100 %) 16S rRNA gene sequences were isolated from terrestrial hot springs at Furnas, São Miguel Island, Azores, Portugal. The strain, designated Az-Fu1, was characterized. The motile, 0·9–2·0 μm rods were Gram-negative and non-sporulating. The temperature growth range was from 50 to 73 °C (optimum at 68 °C). The strains grew fastest in 0·1 % (w/v) NaCl and at pH 6, although growth was observed from pH 5·5 to 7·0. Az-Fu1 can use elemental sulfur, sulfite, thiosulfate, ferrous iron or hydrogen as electron donors, and oxygen (0·2–9·0 %, v/v) as electron acceptor. Az-Fu1 is also able to grow anaerobically, with elemental sulfur, arsenate and ferric iron as electron acceptors. The Az-Fu1 G+C content was 33·6 mol%. Maximum-likelihood analysis of the 16S rRNA phylogeny placed the isolate in a distinct lineage within the , closely related to (2·0 % distant). The 16S rRNA gene of Az-Fu1 is 7·7 % different from that of and 6·8 % different from . Based on the phenotypic and phylogenetic characteristics presented here, it is proposed that Az-Fu1 belongs to the recently described genus . It is further proposed that Az-Fu1 represents a new species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02790-0
2004-01-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540033.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02790-0&mimeType=html&fmt=ahah

References

  1. Aragno M. 1992; Thermophilic, aerobic, hydrogen-oxidizing (knallgas) bacteria. In The Prokaryotes vol IV, 2nd edn. pp  3917–3933 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  2. Beffa T., Blanc M., Aragno M. 1996; Obligately and facultatively autotrophic, sulphur- and hydrogen-oxidizing thermophilic bacteria isolated from hot composts. Arch Microbiol 165:34–40 [CrossRef]
    [Google Scholar]
  3. Beveridge T. J., Popkin T. J., Cole R. C. 1994; Electron microscopy. In Methods for General and Molecular Bacteriology pp  42–71 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Bonjour F., Aragno M. 1986; Growth of thermophilic, obligatorily chemolithoautotrophic hydrogen-oxidizing bacteria related to Hydrogenobacter with thiosulfate and elemental sulfur as electron and energy source. FEMS Microbiol Lett 35:11–15 [CrossRef]
    [Google Scholar]
  5. Boone D. R., Johnson R. L., Liu Y. 1989; Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implication in the measurement of K m for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741
    [Google Scholar]
  6. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. 1992; A phylogenetic analysis of Aquifex pyrophilus . Syst Appl Microbiol 15:352–356 [CrossRef]
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  8. Deckert G., Warren P. V., Gaasterland T. 12 other authors 1998; The complete genome of the hyperthermophilic bacterium Aquifex aeolicus . Nature 392:353–358 [CrossRef]
    [Google Scholar]
  9. Eder W., Huber R. 2002; New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318 [CrossRef]
    [Google Scholar]
  10. Ferguson T. J., Mah R. A. 1983; Isolation and characterization of an H2-oxidizing methanogen. Appl Environ Microbiol 45:265–274
    [Google Scholar]
  11. Götz D., Banta A., Beveridge T. J., Rushdi A. I., Simoneit B. R. T., Reysenbach A.-L. 2002; Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel thermophilic hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359 [CrossRef]
    [Google Scholar]
  12. Hjörleifsdottir S., Skirnisdottir S., Hreggvidsson G. O., Holst O., Kristjansson J. K. 2001; Species composition of cultivated and noncultivated bacteria from short filaments in an Icelandic hot spring at 88 °C. Microb Ecol 42:117–125
    [Google Scholar]
  13. Huber R., Wilharm T., Huber D. 7 other authors 1992; Aquifex pyrophilus gen. nov. sp. nov. represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351 [CrossRef]
    [Google Scholar]
  14. Huber R., Eder W., Heldwein S., Wanner G., Huber H., Rachel R., Stetter K. O. 1998; Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583
    [Google Scholar]
  15. Jones T. G., Gardener S., Simon B. M. 1983; Bacterial reduction of ferric iron in a stratified eutrophic lake. J Gen Microbiol 129:131–139
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1984; Hydrogenobacter thermophilus gen. nov., sp. nov. an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34:5–10 [CrossRef]
    [Google Scholar]
  18. Kristjansson J. K., Ingason A., Alfredsson G. A. 1985; Isolation of thermophilic obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus from Icelandic hot springs. Arch Microbiol 140:321–325 [CrossRef]
    [Google Scholar]
  19. Kryukov V. R., Saveleva N. D., Pusheva M. A. 1983; Calderobacterium hydrogenophilum , nov. gen., nov. sp., an extremely thermophilic hydrogen bacterium and its hydrogenase activity. Mikrobiologiya 52:781–788 (in Russian
    [Google Scholar]
  20. Masaharu I., Yasuo I., Tohru K. 1987; Colony formation of Hydrogenobacter thermophilus on a plate solidified with gelrite. Agric Biol Chem 51:3139–3141 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Nishihara H., Igarashi Y., Kodama T. 1990; A new isolate of Hydrogenobacter , an obligately chemolithotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot spring. Arch Microbiol 153:294–298 [CrossRef]
    [Google Scholar]
  23. Okada Y., Wachi M., Hirata A., Suzuki K., Nagai K., Matsuhashi M. 1994; Cytoplasmic axial filaments in Escherichia coli cells: possible function in the mechanism of chromosome segregation and cell division. J Bacteriol 176:917–922
    [Google Scholar]
  24. Pitulle C., Yang Y., Marchiani M., Moore E. R. B., Siefert J. L., Aragno M., Jurtshuk P., Fox G. E. 1994; Phylogenetic position of the genus Hydrogenobacter . Int J Syst Bacteriol 44:620–626 [CrossRef]
    [Google Scholar]
  25. Ratkowsky D. A., Olley J., McMeekin T. A., Ball A. 1982; Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1–5
    [Google Scholar]
  26. Reysenbach A.-L., Banta A., Boone D. R., Cary S. C., Luther G. W. 2000a; Microbial essentials at hydrothermal vents. Nature 404:835–836 [CrossRef]
    [Google Scholar]
  27. Reysenbach A.-L., Ehringer M., Hershberger K. 2000b; Microbial diversity at 83 °C in Calcite Springs, Yellowstone National Park: another environment where Aquificales and ‘Korarchaeota’ coexist. Extremophiles 4:61–67
    [Google Scholar]
  28. Reysenbach A.-L., Götz D., Yernool D. 2002a; Microbial diversity of marine and terrestrial thermal springs. In Biodiversity of Microbial Life pp  394–396 Edited by Staley J. T., Reysenbach A.-L. New York: Wiley-Liss;
    [Google Scholar]
  29. Reysenbach A.-L., Götz D., Banta A., Jeanthon C., Fouquet I. 2002b; Expanding the distribution of the Aquificales to the deep-sea vents on Mid-Atlantic Ridge and Central Indian Ridge. Cah Biol Mar 43:425–428
    [Google Scholar]
  30. Saveleva N. D., Kryukov V. R., Pusheva M. A. 1982; An obligate thermophilic hydrogen bacterium. Mikrobiologiya 51:765–769 (in Russian
    [Google Scholar]
  31. Shima S., Suzuki K. I. 1993; Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth. Int J Syst Bacteriol 43:703–708 [CrossRef]
    [Google Scholar]
  32. Skirnisdottir S., Hreggvidsson G. O., Hjörleifsdottir S., Marteinsson V. T., Petursdottir S. K., Holst O., Kristjansson J. 2000; Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841 [CrossRef]
    [Google Scholar]
  33. Stöhr R., Waberski A., Völker H., Tindall B. J., Thomm M. 2001; Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘ Hydrogenobacter/Aquifex ’. Int J Syst Evol Microbiol 51:1853–1862 [CrossRef]
    [Google Scholar]
  34. Takai K., Hirayama H., Sakihama Y., Inagaki F., Yamato Y., Horikoshi K. 2002; Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054 [CrossRef]
    [Google Scholar]
  35. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003; Sulfurihydrogenibium subterraneum gen. nov., sp. nov. from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827 [CrossRef]
    [Google Scholar]
  36. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  37. Wilson D. R., Beveridge T. J. 1993; Bacterial flagellar filaments and their component flagellins. Can J Microbiol 39:451–472 [CrossRef]
    [Google Scholar]
  38. Yamamoto H., Hiraishi A., Kato K., Chiura H. X., Maki Y., Shimuzu A. 1998; Phylogenetic evidence for the existence of novel thermophilic bacteria in hot springs sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02790-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02790-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error