1887

Abstract

A thermophilic, anaerobic, chemolithoautotrophic bacterium was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at 9° 50′ N. Cells of the organism were Gram-negative, motile rods that were about 1·0 μm in length and 0·6 μm in width. Growth occurred between 60 and 80 °C (optimum at 75 °C), 0·5 and 4·5 % (w/v) NaCl (optimum at 2 %) and pH 5 and 7 (optimum at 5·5). Generation time under optimal conditions was 1·57 h. Growth occurred under chemolithoautotrophic conditions in the presence of H and CO, with nitrate or sulfur as the electron acceptor and with concomitant formation of ammonium or hydrogen sulfide, respectively. Thiosulfate, sulfite and oxygen were not used as electron acceptors. Acetate, formate, lactate and yeast extract inhibited growth. No chemoorganoheterotrophic growth was observed on peptone, tryptone or Casamino acids. The genomic DNA G+C content was 54·6 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the organism was a member of the domain and formed a deep branch within the phylum , with as its closest relative (94·4 % sequence similarity). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the newly described genus . The type strain is HB-1 (=DSM 15698=JCM 12110).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02781-0
2004-01-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540175.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02781-0&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P., Raguénès G., Cueff V, Cambon-Bonavita M.-A. 2002; Caminibacter hydrogeniphilus gen. nov., sp nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  2. Alain K., Rolland S., Crassous P. 9 other authors 2003; Desulfurobacterium crinifex sp. nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium . Extremophiles 7:361–370 [CrossRef]
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  4. Blöchl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., Stetter K. O. 1997; Pyrolobus fumarii , gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21 [CrossRef]
    [Google Scholar]
  5. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. 1992; A phylogenetic analysis of Aquifex pyrophilus . Syst Appl Microbiol 15:352–356 [CrossRef]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  7. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  8. Cowen J. P., Giovannoni S. J., Kenig F., Johnson H. P., Butterfield D., Rappe M. S., Hutnak M., Lam P. 2003; Fluids from aging ocean crust that support microbial life. Science 299:120–123 [CrossRef]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  10. Diamond D. 1993 QuikChem Automated Ion Analyzer Methods Manual , methods no. 31-107-06-1-A and 31-107-04-1-A Milwaukee, WI: Lachat Instruments;
    [Google Scholar]
  11. Edmond J. M., Von Damm K. L. 1985; Chemistry of ridge crest hot springs. Proc Biol Soc Wash 6:43–47
    [Google Scholar]
  12. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  14. Giovannoni S. J. 1991; The polymerase chain reaction. In Nucleic Acid Techniques in Bacterial Systematics pp  177–203 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  15. Huber R., Rossnagel P., Woese C. R., Rachel R., Langworthy T. A., Stetter K. O. 1996; Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophillic bacterium Ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol 19:40–49 [CrossRef]
    [Google Scholar]
  16. Huber H., Diller S., Horn C., Rachel R. 2002; Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae . Int J Syst Evol Microbiol 52:1859–1865 [CrossRef]
    [Google Scholar]
  17. Huss V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  18. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD system 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  19. L'Haridon S., Cilia V., Messner P., Raguenes G., Gambacorta A., Sleytr U. B., Prieur D., Jeanthon C. 1998; Desulfurobacterium thermolithotrophum gen. nov., sp. nov. a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711 [CrossRef]
    [Google Scholar]
  20. Lilley M. D., Butterfield D. A., Olson E. J., Lupton J. E., Macko S. A., McDuff R. E. 1993; Anomalous CH4 and NH+ 4 concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364:45–47 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Millero F. J. 1996; Micronutrients in the oceans. In Chemical Oceanography , 2nd edn. pp  281–305 Edited by Kennish M. J., Lutz P. L. Boca Raton, FL: CRC Press;
    [Google Scholar]
  23. Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Pimenov N. V., Tourova T. P., Antipov A. N., Spring S., Stackebrandt E., Bonch-Osmolovskaya E. A. 2003; Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329 [CrossRef]
    [Google Scholar]
  24. Reysenbach A.-L., Wickham G. S., Pace N. R. 1994; Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring. Yellowstone National Park. Appl Environ Microbiol 60:2113–2119
    [Google Scholar]
  25. Stetter K. O., König H., Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551 [CrossRef]
    [Google Scholar]
  26. Tivey M. K. 1995; The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction. Geochim Cosmochim Acta 59:1933–1949 [CrossRef]
    [Google Scholar]
  27. Tunnicliffe V., Botros M., de Burgh M. E., Dinet A., Johnson H. P., Juniper S. K., McDuff R. E. 1986; Hydrothermal vents of Explorer Ridge, northeast Pacific. Deep-Sea Res 33:401–412 [CrossRef]
    [Google Scholar]
  28. Vetriani C., Jannasch H. W., MacGregor B. J., Stahl D. A., Reysenbach A.-L. 1999; Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384
    [Google Scholar]
  29. Von Damm K. L. 1995; Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (Geophysical monograph 91) pp  222–247 Edited by Humphris S. E., Zierenberg R. A., Mullineaux L. S., Thomson R. E. Washington, DC: American Geophysical Union;
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  31. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02781-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02781-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error