1887

Abstract

Two Gram-negative, rod-shaped, non-spore-forming strains, designated 08RB2639 and 08RB2781-1, were isolated from a sheep () and a domestic boar (), respectively. By 16S rRNA gene sequencing, the isolates revealed identical sequences and were shown to belong to the . They exhibited 97.8 % 16S rRNA gene sequence similarity with PR17, CCUG 50899, SCII24 and CCUG 38531 and 97.4 % sequence similarity with ESC1, LMG 3331 and LUP21. The gene sequences of the two isolates showed only minor differences (99.5 % sequence similarity), and strain 08RB2639 exhibited the highest sequence similarity with CCUG 24694 (91.3 %). The quinone system was ubiquinone Q-10, with minor amounts of Q-9 and Q-11, the major polyamines were spermidine, putrescine and -homospermidine and the major lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine, with moderate amounts of the -specific unidentified aminolipid AL2. The major fatty acids (>20 %) were Cω7 and C cyclo ω8. These traits were in excellent agreement with the assignment of the isolates to the genus . DNA–DNA relatedness and physiological and biochemical tests allowed genotypic and phenotypic differentiation from other members of the genus . Hence, it is concluded that the isolates represent a novel species, for which the name sp. nov. is proposed (type strain 08RB2639  = DSM 23868  = CCUG 60088  = CCM 7822).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027631-0
2011-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2278.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027631-0&mimeType=html&fmt=ahah

References

  1. Altenburger P. , Busse H.-J. , Kämpfer P. , Lubitz W. , Makristathis A. . ( 1996; ). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Busse H.-J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8.[CrossRef]
    [Google Scholar]
  3. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Holmes B. , Popoff M. , Kiredjian M. , Kersters K. . ( 1988; ). Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as Group Vd. . Int J Syst Bacteriol 38:, 406–416. [CrossRef]
    [Google Scholar]
  5. Huber B. , Scholz H. C. , Kämpfer P. , Falsen E. , Langer S. , Busse H. J. . ( 2010; ). Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. . Int J Syst Evol Microbiol 60:, 321–326. [CrossRef] [PubMed]
    [Google Scholar]
  6. Imran A. , Hafeez F. Y. , Frühling A. , Schumann P. , Malik K. A. , Stackebrandt E. . ( 2010; ). Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum . . Int J Syst Evol Microbiol 60:, 1548–1553. [CrossRef] [PubMed]
    [Google Scholar]
  7. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  8. Kämpfer P. , Steiof M. , Dott W. . ( 1991; ). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  9. Kämpfer P. , Buczolits S. , Albrecht A. , Busse H.-J. , Stackebrandt E. . ( 2003; ). Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov.. Int J Syst Evol Microbiol 53:, 893–896. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kämpfer P. , Scholz H. C. , Huber B. , Falsen E. , Busse H. J. . ( 2007; ). Ochrobactrum haematophilum sp. nov. and Ochrobactrum pseudogrignonense sp. nov., isolated from human clinical specimens. . Int J Syst Evol Microbiol 57:, 2513–2518. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kämpfer P. , Sessitsch A. , Schloter M. , Huber B. , Busse H.-J. , Scholz H. C. . ( 2008; ). Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment. . Int J Syst Evol Microbiol 58:, 1426–1431. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kumar S. , Tamura K. , Jakobsen I. B. , Nei M. . ( 2001; ). mega2: molecular evolutionary genetics analysis software. . Bioinformatics 17:, 1244–1245. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lebuhn M. , Achouak W. , Schloter M. , Berge O. , Meier H. , Barakat M. , Hartmann A. , Heulin T. . ( 2000; ). Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov.. Int J Syst Evol Microbiol 50:, 2207–2223. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lechner U. , Baumbach R. , Becker D. , Kitunen V. , Auling G. , Salkinoja-Salonen M. . ( 1995; ). Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description. . Biodegradation 6:, 83–92. [CrossRef] [PubMed]
    [Google Scholar]
  15. Scholz H. C. , Tomaso H. , Dahouk S. A. , Witte A. , Schloter M. , Kämpfer P. , Falsen E. , Neubauer H. . ( 2006; ). Genotyping of Ochrobactrum anthropi by recA-based comparative sequence, PCR-RFLP, and 16S rRNA gene analysis. . FEMS Microbiol Lett 257:, 7–16. [CrossRef] [PubMed]
    [Google Scholar]
  16. Stolz A. , Busse H.-J. , Kämpfer P. . ( 2007; ). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef] [PubMed]
    [Google Scholar]
  17. Teyssier C. , Marchandin H. , Jean-Pierre H. , Masnou A. , Dusart G. , Jumas-Bilak E. . ( 2007; ). Ochrobactrum pseudintermedium sp. nov., a novel member of the family Brucellaceae, isolated from human clinical samples. . Int J Syst Evol Microbiol 57:, 1007–1013. [CrossRef] [PubMed]
    [Google Scholar]
  18. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  19. Tindall B. J. . ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130.[CrossRef]
    [Google Scholar]
  20. Tindall B. J. . ( 1990b; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  21. Tripathi A. K. , Verma S. C. , Chowdhury S. P. , Lebuhn M. , Gattinger A. , Schloter M. . ( 2006; ). Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. . Int J Syst Evol Microbiol 56:, 1677–1680. [CrossRef] [PubMed]
    [Google Scholar]
  22. Trujillo M. E. , Willems A. , Abril A. , Planchuelo A. M. , Rivas R. , Ludeña D. , Mateos P. F. , Martínez-Molina E. , Velázquez E. . ( 2005; ). Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov.. Appl Environ Microbiol 71:, 1318–1327. [CrossRef] [PubMed]
    [Google Scholar]
  23. Velasco J. , Romero C. , López-Goñi I. , Leiva J. , Díaz R. , Moriyón I. . ( 1998; ). Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp.. Int J Syst Bacteriol 48:, 759–768. [CrossRef] [PubMed]
    [Google Scholar]
  24. Yokota A. , Akagawa-Matsushita M. , Hiraishi A. , Katayama Y. , Urakami T. , Yamasato K. . ( 1992; ). Distribution of quinone systems in microorganisms: Gram-negative eubacteria. . Bull Jpn Fed Cult Coll 8:, 136–171.
    [Google Scholar]
  25. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
  26. Zurdo-Piñeiro J. L. , Rivas R. , Trujillo M. E. , Vizcaíno N. , Carrasco J. A. , Chamber M. , Palomares A. , Mateos P. F. , Martínez-Molina E. , Velázquez E. . ( 2007; ). Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. . Int J Syst Evol Microbiol 57:, 784–788. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027631-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027631-0
Loading

Data & Media loading...

vol. , part 9, pp. 2278 - 2283

Neighbour-joining phylogenetic tree based on sequences (879 bp) showing the position of sp. nov. in the genus .

DNA–DNA reassociation between strains of sp. nov. and their closest phylogenetic neighbours.

[PDF file of Supplementary Figure and Table](84 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error