1887

Abstract

A novel moderately thermophilic, microaerobic to anaerobic, chemolithoautotrophic bacterium, designated strain CR, was isolated from a deep-sea hydrothermal vent site at 36°N on the Mid-Atlantic Ridge. Cells were Gram-negative, non-motile rods. The organism grew at 45–65 °C and pH 6·5–7·4, with optimum growth at 55 °C and pH 6·9–7·1. The NaCl range for growth was 5–50 g l (optimum 30 g l). Strain CR was an obligate chemolithoautotroph, growing with H as energy source, sulfur, nitrate or oxygen as electron acceptors and CO as carbon source. Hydrogen sulfide and ammonium were the respective products of sulfur and nitrate reduction. The G+C content of the genomic DNA was 32·1 mol%. Based on 16S rRNA gene sequence analysis, this organism was most closely related to (94·9 % similarity). On the basis of phenotypic and phylogenetic data, it is proposed that the isolate represents a novel species, sp. nov. The type strain is CR (=DSM 15016=JCM 11957). The phylogenetic data also correlate well with the significant phenotypic differences between the lineage encompassing the genera and and other members of the class ‘’. The lineage encompassing the genera and is therefore proposed as a new order, ord. nov., represented by a single family, fam. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02753-0
2004-01-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540041.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02753-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V. & Cambon-Bonavita, M.-A. ( 2002; ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1317–1323.[CrossRef]
    [Google Scholar]
  2. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  3. Bonch-Osmolovskaya, E. A., Sokolova, T. G., Kostrikina, N. A. & Zavarzin, G. A. ( 1990; ). Desulfurella acetivorans gen. nov. and sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153, 151–155.[CrossRef]
    [Google Scholar]
  4. Campbell, B. J., Jeanthon, C., Kostka, J. E., Luther, G. W., III & Cary, S. C. ( 2001; ). Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67, 4566–4572.[CrossRef]
    [Google Scholar]
  5. Cary, S. C., Cottrell, M. T., Stein, J. L., Camacho, F. & Desbruyères, D. ( 1997; ). Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl Environ Microbiol 63, 1124–1130.
    [Google Scholar]
  6. Corre, E., Reysenbach, A.-L. & Prieur, D. ( 2001; ). ε-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205, 329–335.
    [Google Scholar]
  7. Felsenstein, J. ( 1988; ). Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22, 521–565.[CrossRef]
    [Google Scholar]
  8. Garrity, G. M. & Holt, J. G. ( 2001; ). The road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 119–166. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  9. Haddad, A., Camacho, F., Durand, P. & Cary, S. C. ( 1995; ). Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl Environ Microbiol 61, 1679–1687.
    [Google Scholar]
  10. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  11. La Riviere, J. W. M. & Schmidt, K. ( 1992; ). Morphologically conspicuous sulfur-oxidizing eubacteria. In The Prokaryotes, 2nd edn, pp. 3934–3947. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  12. Longnecker, K. & Reysenbach, A. ( 2001; ). Expansion of geographic distribution of a novel lineage of ε-Proteobacteria to a hydrothermal vent site on the southern East Pacific Rise. FEMS Microbiol Ecol 35, 287–293.
    [Google Scholar]
  13. Luijten, M. L. G. C., de Weert, J., Smidt, H., Boschker, H. T. S., de Vos, W. M., Schraa, G. & Stams, A. J. M. ( 2003; ). Description of Sulfurospirillum halorespirans sp. nov., an anaerobic tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53, 787–793.[CrossRef]
    [Google Scholar]
  14. Maidak, B. L., Cole, J. R., Parker, C. T., Jr & 11 other authors ( 1999; ). A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27, 171–173.[CrossRef]
    [Google Scholar]
  15. Miroshnichenko, M. L., Gongadze, G. M., Lysenko, A. M. & Bonch-Osmolovskaya, E. A. ( 1994; ). Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago). Arch Microbiol 161, 88–93.
    [Google Scholar]
  16. Miroshnichenko, M. L., Kostrikina, N. A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2002; ). Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ε-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1299–1304.[CrossRef]
    [Google Scholar]
  17. Miroshnichenko, M. L., Kostrikina, N. A., Chernyh, N. A., Pimenov, N. V., Tourova, T. P., Antipov, A. N., Spring, S., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2003; ). Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53, 323–329.[CrossRef]
    [Google Scholar]
  18. Moyer, C. L., Dobb, F. C. & Karl, D. M. ( 1995; ). Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system. Appl Environ Microbiol 61, 1555–1562.
    [Google Scholar]
  19. Polz, M. F. & Cavanaugh, C. M. ( 1995; ). Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92, 7232–7236.[CrossRef]
    [Google Scholar]
  20. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  21. Reysenbach, A.-L., Longnecker, K. & Kirshtein, J. ( 2000; ). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef]
    [Google Scholar]
  22. Schumacher, W., Kroneck, P. M. H. & Pfennig, N. ( 1992; ). Comparative systematic study on ‘Spirillum’ 5175, Campylobacter and Wolinella species. Arch Microbiol 158, 287–293.[CrossRef]
    [Google Scholar]
  23. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K. H. & Horikoshi, K. ( 2003; ). Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218, 167–174.
    [Google Scholar]
  24. Tanner, A. C. R., Badger, S. M., Lai, C.-H., Listgarten, M. A., Visconti, R. A. & Socransky, S. S. ( 1981; ). Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int J Syst Bacteriol 31, 432–445.[CrossRef]
    [Google Scholar]
  25. Trüper, H. G. & Schlegel, H. G. ( 1964; ). Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. J Microbiol Serol 30, 225–232.
    [Google Scholar]
  26. Vandamme, P. & De Ley, J. ( 1991; ). Proposal for a new family, Campylobacteraceae. Int J Syst Bacteriol 41, 451–455.[CrossRef]
    [Google Scholar]
  27. Vandamme, P., Falsen, E., Rossau, R., Hoste, B., Segers, P., Tytgat, R. & De Ley, J. ( 1991; ). Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 41, 88–103.[CrossRef]
    [Google Scholar]
  28. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2888.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02753-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02753-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error