1887

Abstract

Cyanobacteria with true branching are classified in Subsection V (formerly order Stigonematales) in the phylum . They exhibit a high degree of morphological complexity and are known from particular biotopes. Only a few stigonematalean morphotypes have been cultured, and therefore the high variability of morphotypes found in nature is under-represented in culture. Axenic cultures of and Rippka . were, to date, the only representatives of this Subsection in phylogenetic studies. The 16S rDNA sequence analysis data in this report confirm that heterocyst-forming cyanobacteria are a monophyletic group. However, unlike previous studies have suggested, these 16S rDNA data on new Stigonematales strains show that the true branching cyanobacteria are polyphyletic and can be separated into at least two major groups defined by their branching type, the first group being characterized by T-branching and the second group by Y-branching. Cyanobacteria with intercalary heterocysts and either no branching or false-branching also formed separate clusters. In consequence, our phylogenetic data do not correlate with the bacteriological and traditional classifications, which distinguish filamentous heterocystous cyanobacteria with or without true branching (Nostocales/Stigonematales).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02744-0
2004-03-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540349.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02744-0&mimeType=html&fmt=ahah

References

  1. Anagnostidis, K. & Komárek, J. ( 1990; ). Modern approach to the classification system of Cyanophytes 5 – Stigonematales. Arch Hydrobiol Suppl 86, 1–73.
    [Google Scholar]
  2. Bornet, E. & Flahault, C. ( 1886; ). Révision des Nostocacées filamenteuses hétérocystées contenues dans les principaux herbiers de France. Ann Sci Nat Bot Ser 3 7, 323–381.
    [Google Scholar]
  3. Bourrelly, P. ( 1985; ). Les Algues d'Eau Douce. III Eugléniens, Péridiniens, Algues Rouges et Algues Bleues, 2nd edn. Paris: N. Boubée & Cie.
  4. Castenholz, R. W. ( 1969; ). The thermophilic cyanophytes of Iceland and the upper temperature limit. J Phycol 5, 360–368.[CrossRef]
    [Google Scholar]
  5. Castenholz, R. W. ( 1978; ). The biogeography of hot spring algae through enrichment cultures. Mitt Int Verein Limnol 21, 296–315.
    [Google Scholar]
  6. Castenholz, R. W. ( 2001; ). General characteristics of the cyanobacteria. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 474–487. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  7. Desikachary, T. V. ( 1959; ). Cyanophyta. ICAR Monographs on Algae. New Dehli: Indian Council of Agricultural Research.
  8. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5c. Seattle: Department of Genetics, University of Washington.
  9. Fewer, D., Friedl, T. & Büdel, B. ( 2002; ). Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other's closest living relatives. Mol Phylogenet Evol 23, 82–90.[CrossRef]
    [Google Scholar]
  10. Garcia-Pichel, F., Nübel, U. & Muyzer, G. ( 1998; ). The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169, 469–482.[CrossRef]
    [Google Scholar]
  11. Giovannoni, S. F., Turner, S., Olsen, G., Barns, S., Lane, D. J. & Pace, N. R. ( 1988; ). Evolutionary relationships among Cyanobacteria and green chloroplasts. J Bacteriol 170, 3584–3592.
    [Google Scholar]
  12. Golubíc, S., Hernandez-Mariné, M. & Hoffmann, L. ( 1996; ). Developmental aspects of branching in filamentous Cyanophyta/Cyanobacteria. Arch Hydrobiol Suppl 117, 303–329.
    [Google Scholar]
  13. Gugger, M., Lyra, C., Henriksen, P., Couté, A., Humbert, J.-F. & Sivonen, S. ( 2002; ). Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Int J Syst Evol Microbiol 52, 1867–1880.[CrossRef]
    [Google Scholar]
  14. Herdman, M., Janvier, M., Rippka, R. & Stanier, R. Y. ( 1979a; ). Genome size of cyanobacteria. J Gen Microbiol 111, 73–85.[CrossRef]
    [Google Scholar]
  15. Herdman, M., Janvier, M., Waterbury, J. B., Rippka, R., Stanier, R. Y. & Mandel, M. ( 1979b; ). Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111, 63–71.[CrossRef]
    [Google Scholar]
  16. Hernandez-Mariné, M. C., Fernández, M. & Merino, V. ( 1992; ). Mastigocladopsis repens (Nostochopsaceae): a new cyanophyte from Spanish soils. Cryptogam Algol 13, 113–120.
    [Google Scholar]
  17. Hoffmann, L. ( 1990; ). Presence of Mastigocladopsis jogensis (Cyanophyceae, Mastigocladopsidaceae) in Corsica (France). Cryptogam Algol 11, 219–224.
    [Google Scholar]
  18. Hoffmann, L. ( 1994; ). Characterization of Mastigocladospis jogensis (Cyanophyceae, Stigonematales) in culture. Arch Hydrobiol Suppl 103, 43–55.
    [Google Scholar]
  19. Hoffmann, L. & Castenholz, R. W. ( 2001; ). Subsection V (formerly Stigonematales Geitler 1925). In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 589–599. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  20. Hoffmann, L., Gugger, M. & Asencio-Martinez, A. D. ( 2003; ). Morphological and molecular characterization of a stigonematalean cyanobacterium isolated from a Spanish cave. Arch Hydrobiol Suppl 148, 259–266.
    [Google Scholar]
  21. Iteman, I., Rippka, R., Tandeau de Marsac, N. & Herdman, M. ( 2002; ). rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiology 148, 481–496.
    [Google Scholar]
  22. Jeeji-Bai, N. ( 1972; ). The genus Westiellopsis Janet. In Taxonomy and Biology of Blue-Green Algae, pp. 62–74. Edited by T. V. Desikachary. Madras: University of Madras.
  23. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  24. Komárek, J. & Anagnostidis, K. ( 1989; ). Modern approach to the classification system of Cyanophytes 4 – Nostocales. Arch Hydrobiol Suppl 82, 247–345.
    [Google Scholar]
  25. Kotai, J. ( 1972; ). Instructions for Preparation of Modified Nutrient Solution Z8 for Algae, Publication B-11/69. Blindern, Oslo: Norwegian Institute for Water Research.
  26. Lachance, M.-A. ( 1981; ). Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid–deoxyribonucleic acid reassociation. Int J Syst Bacteriol 31, 139–147.[CrossRef]
    [Google Scholar]
  27. Lane, D. J. ( 1991; ). 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–174. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  28. Litvaitis, M. K. ( 2002; ). A molecular test of cyanobacterial phylogeny: inferences from constraint analyses. Hydrobiologia 468, 135–145.[CrossRef]
    [Google Scholar]
  29. Ludwig, W., Strunk, O., Klugbauer, S., Weizenegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K. H. ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef]
    [Google Scholar]
  30. Lyra, C., Suomalainen, S., Gugger, M., Vézie, C., Sundman, P., Paulin, L. & Sivonen, K. ( 2001; ). Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51, 513–526.
    [Google Scholar]
  31. Merino, V., Hernández-Mariné, M. & Fernández, M. ( 1994; ). Ultrastructure of Mastigocladopsis repens (Stigonematales, Cyanophyceae). Cryptogam Algol 15, 37–46.
    [Google Scholar]
  32. Otsuka, S., Suda, S., Li, R., Watanabe, M., Oyaizu, H., Matsumoto, S. & Watanabe, M. M. ( 1998; ). 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol Lett 164, 119–124.[CrossRef]
    [Google Scholar]
  33. Page, R. D. M. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  34. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. ( 1979; ). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.[CrossRef]
    [Google Scholar]
  35. Rocap, G., Listel, D. L., Waterbury, J. B. & Chisholm, S. W. ( 2002; ). Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68, 1180–1191.[CrossRef]
    [Google Scholar]
  36. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  37. Suda, S., Watanabe, M. M., Otsuka, S., Mahakahant, A., Yongmanitchai, W., Nopartnaraporn, N., Liu, Y. & Day, J. G. ( 2002; ). Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52, 1577–1595.[CrossRef]
    [Google Scholar]
  38. Turner, S. ( 1997; ). Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol 11, 13–52.
    [Google Scholar]
  39. Turner, S., Pryer, K. M., Miao, V. P. W. & Palmer, J. D. ( 1999; ). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Eukaryot Microbiol 46, 327–338.[CrossRef]
    [Google Scholar]
  40. Urbach, E., Scanlan, D. J., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. ( 1998; ). Rapid diversification of marine picoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46, 188–201.[CrossRef]
    [Google Scholar]
  41. Weber, B., Wessels, D. C. J. & Büdel, B. ( 1996; ). Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algol Stud 83, 565–579.
    [Google Scholar]
  42. Wilmotte, A. ( 1994; ). Molecular evolution and taxonomy of the cyanobacteria. In The Molecular Biology of Cyanobacteria, pp. 1–25. Edited by D. A. Bryant. Dordrecht: Kluwer.
  43. Wilmotte, A. & Herdman, M. ( 2001; ). Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 487–493. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  44. Wilmotte, A., van der Auwera, A. G. & de Watcher, R. ( 1993; ). Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC 7518, and phylogenetic analysis. FEBS Lett 317, 96–100.[CrossRef]
    [Google Scholar]
  45. Zehr, J. P., Mellon, M. T. & Hiorns, W. D. ( 1997; ). Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology 143, 1443–1450.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02744-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02744-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error