1887

Abstract

A strictly anaerobic, cellulolytic strain, designated 18P13, was isolated from a human faecal sample. Cells were Gram-positive non-motile cocci. Strain 18P13 was able to degrade microcrystalline cellulose but the utilization of soluble sugars was restricted to cellobiose. Acetate and succinate were the major end products of cellulose and cellobiose fermentation. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus of the family . The closest phylogenetic relative was the ruminal cellulolytic strain ATCC 19208 (<95 % 16S rRNA gene sequence similarity). The DNA G+C content of strain 18P13 was 53.05±0.7 mol%. On the basis of phylogenetic analysis, and morphological and physiological data, strain 18P13 can be differentiated from other members of the genus with validly published names. The name sp. nov. is proposed, with 18P13 ( = DSM 18848 = JCM 17042) as the type strain.

Funding
This study was supported by the:
  • French Ministère de la Recherche et de l’Enseignement Supérieur
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027375-0
2012-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/138.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027375-0&mimeType=html&fmt=ahah

References

  1. Allison M. J., Bryant M. P., Katz I., Keeney M. 1962; Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J Bacteriol 83:1084–1093[PubMed]
    [Google Scholar]
  2. Bernalier A., Willems A., Leclerc M., Rochet V., Collins M. D. 1996; Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 166:176–183 [View Article][PubMed]
    [Google Scholar]
  3. Bradford D. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Bioch 72:248–254 [View Article]
    [Google Scholar]
  4. Buchanan R. E., Gibbons N. E. 1974 Bergey’s Manual of Determinative Bacteriology, 8th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Chassard C., Delmas E., Lawson P. A., Bernalier-Donadille A. 2008a; Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. Int J Syst Evol Microbiol 58:1008–1013 [View Article][PubMed]
    [Google Scholar]
  6. Chassard C., Scott K. P., Marquet P., Martin J. C., Del’homme C., Dapoigny M., Flint H. J., Bernalier-Donadille A. 2008b; Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. FEMS Microbiol Ecol 66:496–504 [View Article][PubMed]
    [Google Scholar]
  7. Chassard C., Delmas E., Robert C., Bernalier-Donadille A. 2010; The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol Ecol 74:205–213 [View Article][PubMed]
    [Google Scholar]
  8. Cummings J. H., Macfarlane G. T. 1991; The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459 [View Article][PubMed]
    [Google Scholar]
  9. De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. (editors) 2009 Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 3 New York: Springer;
    [Google Scholar]
  10. Devillard E., Newbold C. J., Scott K. P., Forano E., Wallace R. J., Jouany J. P., Flint H. J. 1999; A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from gram-positive bacteria. FEMS Microbiol Lett 181:145–152 [View Article][PubMed]
    [Google Scholar]
  11. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [View Article][PubMed]
    [Google Scholar]
  12. Flint H. J., Bayer E. A., Rincon M. T., Lamed R., White B. A. 2008; Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131 [View Article][PubMed]
    [Google Scholar]
  13. Forano E., Broussolle V., Gaudet G., Bryant J. A. 1994; Molecular cloning, expression and characterization of a new endoglucanase gene from Fibrobacter succinogenes S85. Curr Microbiol 28:7–14 [View Article]
    [Google Scholar]
  14. Hungate R. E. 1966 The Rumen and Its Microbes London, New York: Academic Press;
    [Google Scholar]
  15. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [View Article]
    [Google Scholar]
  16. Leitch E. C., Walker A. W., Duncan S. H., Holtrop G., Flint H. J. 2007; Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9:667–679 [View Article][PubMed]
    [Google Scholar]
  17. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441 [View Article][PubMed]
    [Google Scholar]
  18. Liu C., Finegold S. M., Song Y., Lawson P. A. 2008; Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:1896–1902 [View Article][PubMed]
    [Google Scholar]
  19. Nicholas K. B., Nicholas H. B. Jr, Deerfield D. W. II 1997; GeneDoc: analysis and visualization of genetic variation. EMBNet News 4:214
    [Google Scholar]
  20. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358[PubMed]
    [Google Scholar]
  21. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F. et al. other authors 2010; A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [View Article][PubMed]
    [Google Scholar]
  22. Rainey F. A. 2009a; Family VIII. Ruminococcaceae fam. nov.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 3 pp. 1016–1043 Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B. New York: Springer;
    [Google Scholar]
  23. Rainey F. A. 2009b; Family V. Lachnospiraceae fam. nov.. In Bergey’s Manual of Systematic Bacteriology vol. 3 pp. 921–968 Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B. New York: Springer;
    [Google Scholar]
  24. Rainey F. A., Janssen P. H. 1995; Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus . FEMS Microbiol Lett 129:69–73[PubMed]
    [Google Scholar]
  25. Ramirez-Farias C., Slezak K., Fuller Z., Duncan A., Holtrop G., Louis P. 2009; Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii . Br J Nutr 101:541–550 [View Article][PubMed]
    [Google Scholar]
  26. Rasmussen S. W. 2002; SEQtools, a software package for analysis of nucleotide and protein sequences. http://www.seqtools.dk
  27. Robert C., Bernalier-Donadille A. 2003; The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 46:81–89 [View Article][PubMed]
    [Google Scholar]
  28. Robert C., Del’Homme C., Bernalier-Donadille A. 2001; Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon. FEMS Microbiol Lett 205:209–214 [View Article][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  30. Salminen S., Bouley C., Boutron-Ruault M. C., Cummings J. H., Franck A., Gibson G. R., Isolauri E., Moreau M. C., Roberfroid M., Rowland I. 1998; Functional food science and gastrointestinal physiology and function. Br J Nutr 80:Suppl 1S147–S171 [View Article][PubMed]
    [Google Scholar]
  31. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rDNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027375-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027375-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error