1887

Abstract

Three marine, heterotrophic, aerobic, agarolytic, pigmented and gliding bacteria were isolated in June 2000 from a sea water sample that was collected in the Gulf of Peter the Great, Sea of Japan, and analysed in a polyphasic taxonomic study. 16S rDNA sequence analysis indicated that strains KMM 3664, KMM 3669 and KMM 3915 were members of the family . Based on phenotypic, chemotaxonomic, genotypic and phylogenetic data, the isolates were classified in the genus as members of a novel species, sp. nov. The type strain is KMM 3664 (=JCM 11735=LMG 21938).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02737-0
2004-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540609.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02737-0&mimeType=html&fmt=ahah

References

  1. Barbeyron T., L'Haridon S., Corre E., Kloareg B., Potin P. 2001; Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [ Cytophaga ] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51:985–997 [CrossRef]
    [Google Scholar]
  2. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  4. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter , with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Felsenstein F. 1995 phylip (Phylogeny Inference Package) version 3.57c Seattle: University of Washington;
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  10. Johansen J. E., Nielsen P., Sjøholm C. 1999; Description of Cellulophaga baltica gen.nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [ Cytophaga ] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Bacteriol 49:1231–1240 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Leisner J. J., Vancanneyt M., Lefebvre K., Vandemeulebroecke K., Hoste B., Euras Vilalta N., Rusul G., Swings J. 2002; Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia. Int J Syst Evol Microbiol 52:927–931 [CrossRef]
    [Google Scholar]
  13. Lewin R. A. 1969; A classification of flexibacteria. J Gen Microbiol 58:189–206 [CrossRef]
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  15. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161 [CrossRef]
    [Google Scholar]
  18. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003; Reichenbachia agariperforans gen. nov., sp. nov., a novel marine bacterium in the phylum Cytophaga Flavobacterium Bacteroides . Int J Syst Evol Microbiol 53:81–85 [CrossRef]
    [Google Scholar]
  19. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  20. Reichenbach H. 1989; Genus I. Cytophaga Winogradsky 1929, 577,AL emend. In Bergey's Manual of Systematic Bacteriology vol 3 pp  2015–2050 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. C. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga -like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb.nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp.nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652 [CrossRef]
    [Google Scholar]
  23. Svetashev V. I., Vysotskii M. V., Ivanova E. P., Mikhailov V. V. 1995; Cellular fatty acids of Alteromonas species. Syst Appl Microbiol 18:37–43 [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  25. Van de Peer Y., De Rijk P., Wuyts J., Winkelmans T., De Wachter R. 2000; The European small subunit ribosomal RNA database. Nucleic Acids Res 28:175–176 [CrossRef]
    [Google Scholar]
  26. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp  241–245 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Greene Publishing and Wiley;
    [Google Scholar]
  27. ZoBell C. E., Upham H. C. 1944; A list of marine bacteria including descriptions of sixty new species. Bull Scripps Inst Oceanogr Univ Calif 5:239–292
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02737-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02737-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error