1887

Abstract

A Gram-negative, motile, non-spore-forming, rod-shaped strain, TF-27 (=KCCM 41648=JCM 11814), was isolated from a tidal flat in Korea. This organism grew well at 25–35 °C, with optimum growth at 30 °C. Strain TF-27 grew optimally in the presence of 2 % NaCl; it did not grow without NaCl or in the presence of >8 % NaCl. Strain TF-27 simultaneously contained both menaquinones and ubiquinones as isoprenoid quinones. The predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The major fatty acids in strain TF-27 were iso-C (20·6 %) and iso-C 2-OH and/or C 7 (21·1 %). The DNA G+C content of strain TF-27 was 42 mol%. Phylogenetic analyses based on 16S rDNA sequences showed that strain TF-27 falls within the radiation of the cluster that is encompassed by the genus . Levels of 16S rDNA sequence similarity between strain TF-27 and the type strains of species were 93·2–96·8 %. On the basis of phenotypic properties and phylogenetic data, strain TF-27 should be placed in the genus as a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02731-0
2004-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540487.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02731-0&mimeType=html&fmt=ahah

References

  1. Aguirre A. A., Balazs G. H., Zimmerman B., Spraker T. R. 1994; Evaluation of Hawaiian green turtles ( Cheledonia mydas ) for potential pathogens associated with fibropapillomas. J Wildl Dis 30:8–15 [CrossRef]
    [Google Scholar]
  2. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  3. Baumann P., Baumann L. 1981; The marine Gram-negative eubacteria: genera Photobacterium , Beneckea , Alteromonas , Pseudomonas , and Alcaligenes . In The Prokaryotes . A Handbook on Habitats, Isolation, and Identification of Bacteria pp  1302–1331 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  4. Boone D. R., Castenholz R. W., Garrity G. M. 2001 Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 New York: Springer;
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov. novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5 ω 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047 [CrossRef]
    [Google Scholar]
  6. Bozal N., Montes M. J., Tudela E., Jiménez F., Guinea J. 2002; Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205
    [Google Scholar]
  7. Brink A. J., van Straten A., van Rensburg A. J. 1995; Shewanella ( Pseudomonas ) putrefaciens bacteremia. Clin Infect Dis 20:1327–1332 [CrossRef]
    [Google Scholar]
  8. Bruns A., Rohde M., Berthe-Corti L. 2001; Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51:1997–2006 [CrossRef]
    [Google Scholar]
  9. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  10. Ivanova E. P., Sawabe T., Gorshkova N. M., Svetashev V. I., Mikhailov V. V., Nicolau D. V., Christen R. 2001; Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033 [CrossRef]
    [Google Scholar]
  11. Jorgensen B. R., Huß H. H. 1989; Growth and activity of Shewanella putrefaciens isolated from spoiling fish. Int J Food Microbiol 9:51–62 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206
    [Google Scholar]
  13. Kostka J. E., Stucki J. W., Nealson K. H., Wu J. 1996; Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clays Clay Miner 44:522–529 [CrossRef]
    [Google Scholar]
  14. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  15. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  16. Levring T. 1946; Some culture experiments with Ulva and artificial seawater. Kungl Fysiogr Sallsk Lund Forh 16:45–56
    [Google Scholar]
  17. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
    [Google Scholar]
  18. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae , and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [CrossRef]
    [Google Scholar]
  19. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321 [CrossRef]
    [Google Scholar]
  20. Nealson K. H., Myers C. R., Wimpee B. 1991; Isolation and identification of manganese reducing bacteria, and estimates of microbial manganese reducing potential in the Black Sea. Deep Sea Res 38:S907–S920 [CrossRef]
    [Google Scholar]
  21. Nogi Y., Kato C., Horikoshi K. 1998; Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338 [CrossRef]
    [Google Scholar]
  22. Nozue H., Hayashi T., Hashimoto Y., Ezaki T., Hamasaki K., Ohwada K., Terawaki Y. 1992; Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S . alga Simidu et al., 1990, 335. Int J Syst Bacteriol 42:628–634 [CrossRef]
    [Google Scholar]
  23. Perry K. A., Kostka J. E., Luther G. W. III, Nealson K. H. 1993; Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science 259:801–803 [CrossRef]
    [Google Scholar]
  24. Petrovskis E. A., Vogel T. M., Adriaens P. 1994; Effects of electron acceptors and donors on transformation of tetrachloromethane by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 121:357–364 [CrossRef]
    [Google Scholar]
  25. Semple K. M., Westlake D. W. S. 1987; Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 33:366–371 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  27. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38:321–325 [CrossRef]
    [Google Scholar]
  28. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  29. Venkateswaran K., Moser D. P., Dollhopf M. E. 10 other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724 [CrossRef]
    [Google Scholar]
  30. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  31. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  32. Yoon J.-H., Kim I.-G., Shin D.-Y., Kang K. H., Park Y.-H. 2003; Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02731-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02731-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error