1887

Abstract

A Gram-negative, aerobic, moderately halophilic bacterium, designated Set74, was isolated from brine of a salt concentrator at Ain Oulmene, Algeria. The strain grew optimally at 37–40 °C, at pH 6.5–7.0 and with 5–7.5 % (w/v) NaCl and used various organic compounds as sole carbon, nitrogen and energy sources. Ubiquinone 9 (Q-9) was the major lipoquinone. The main cellular fatty acids were C, Cω9, summed feature 7 (ECL 18.846; C cyclo ω10 and/or Cω6), C 3-OH, Cω9, C and C. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The G+C content of the genomic DNA was 57.4 mol%. The 16S rRNA gene sequence analysis indicated that strain Set74 was a member of the genus . The closest relatives of strain Set74 were NKSG1 (97.5 % 16S rRNA gene sequence similarity) and DD-M3 (97.4 %). DNA–DNA relatedness between strain Set74 and DSM 21262 and DSM 17924 was 45 and 37 %, respectively. On the basis of the phenotypic, chemotaxonomic and phylogenetic features, a novel species, sp. nov., is proposed. The type strain is Set74 ( = CECT 7499  = DSM 22359).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027284-0
2011-09-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2210.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027284-0&mimeType=html&fmt=ahah

References

  1. Aguilera M. , Jiménez-Pranteda M. L. , Kharroub K. , González-Paredes A. , Durban J. J. , Russell N. J. , Ramos-Cormenzana A. , Monteoliva-Sánchez M. . ( 2009; ). Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain. . Int J Syst Evol Microbiol 59:, 1691–1695. [CrossRef] [PubMed]
    [Google Scholar]
  2. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  3. Antunes A. , França L. , Rainey F. A. , Huber R. , Nobre M. F. , Edwards K. J. , da Costa M. S. . ( 2007; ). Marinobacter salsuginis sp. nov., isolated from the brine-seawater interface of the Shaban Deep, Red Sea. . Int J Syst Evol Microbiol 57:, 1035–1040. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baumann L. , Baumann P. , Mandel M. , Allen R. D. . ( 1972; ). Taxonomy of aerobic marine eubacteria. . J Bacteriol 110:, 402–429.[PubMed]
    [Google Scholar]
  5. Bowman J. P. , McCammon S. A. , Brown J. L. , McMeekin T. A. . ( 1998; ). Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. . Int J Syst Bacteriol 48:, 1213–1222.[CrossRef]
    [Google Scholar]
  6. Ekborg N. A. , Gonzalez J. M. , Howard M. B. , Taylor L. E. , Hutcheson S. W. , Weiner R. M. . ( 2005; ). Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. . Int J Syst Evol Microbiol 55:, 1545–1549. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Gauthier M. J. , Lafay B. , Christen R. , Fernandez L. , Acquaviva M. , Bonin P. , Bertrand J.-C. . ( 1992; ). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new extremely halotolerant, hydrocarbon-degrading marine bacterium. . Int J Syst Bacteriol 42:, 568–576.[CrossRef]
    [Google Scholar]
  10. González J. M. , Mayer F. , Moran M. A. , Hodson R. E. , Whitman W. B. . ( 1997; ). Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. . Int J Syst Bacteriol 47:, 369–376. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gorshkova N. M. , Ivanova E. P. , Sergeev A. F. , Zhukova N. V. , Alexeeva Y. , Wright J. P. , Nicolau D. V. , Mikhailov V. V. , Christen R. . ( 2003; ). Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. . Int J Syst Evol Microbiol 53:, 2073–2078. [CrossRef] [PubMed]
    [Google Scholar]
  12. Guo B. , Gu J. , Ye Y.-G. , Tang Y.-Q. , Kida K. , Wu X.-L. . ( 2007; ). Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. . Int J Syst Evol Microbiol 57:, 1970–1974. [CrossRef] [PubMed]
    [Google Scholar]
  13. Handley K. M. , Héry M. , Lloyd J. R. . ( 2009; ). Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. . Int J Syst Evol Microbiol 59:, 886–892. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ivanova E. P. , Mikhailov V. V. . ( 2001; ). A new family, Alteromonadaceae fam. nov., including marina proteobacteria of the genera Alteromonas, Pseudoalteromonas, Idiomarina and Colwellia . . Microbiology (English translation of Mikrobiologiia) 70:, 10–17.
    [Google Scholar]
  15. Jean W. D. , Chen J.-S. , Lin Y.-T. , Shieh W. Y. . ( 2006; ). Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater from An-Ping Harbour, Taiwan. . Int J Syst Evol Microbiol 56:, 2463–2467. [CrossRef] [PubMed]
    [Google Scholar]
  16. Jean W. D. , Huang S. P. , Liu T. Y. , Chen J.-S. , Shieh W. Y. . ( 2009; ). Aliagarivorans marinus gen. nov., sp. nov. and Aliagarivorans taiwanensis sp. nov., facultatively anaerobic marine bacteria capable of agar degradation. . Int J Syst Evol Microbiol 59:, 1880–1887. [CrossRef] [PubMed]
    [Google Scholar]
  17. Jeon C. O. , Lim J.-M. , Park D.-J. , Kim C.-J. . ( 2005; ). Salinimonas chungwhensis gen. nov., sp. nov., a moderately halophilic bacterium from a solar saltern in Korea. . Int J Syst Evol Microbiol 55:, 239–243. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kharroub K. , Aguilera M. , Quesada T. , Morillo J. A. , Ramos-Cormenzana A. , Boulharouf A. , Monteoliva-Sánchez M. . ( 2006; ). Salicola salis sp. nov., an extremely halophilic bacterium isolated from Ezzemoul sabkha in Algeria. . Int J Syst Evol Microbiol 56:, 2647–2652. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim B.-Y. , Weon H.-Y. , Yoo S.-H. , Kim J.-S. , Kwon S.-W. , Stackebrandt E. , Go S.-J. . ( 2006; ). Marinobacter koreensis sp. nov., isolated from sea sand in Korea. . Int J Syst Evol Microbiol 56:, 2653–2656. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kurahashi M. , Yokota A. . ( 2004; ). Agarivorans albus gen. nov., sp. nov., a γ-proteobacterium isolated from marine animals. . Int J Syst Evol Microbiol 54:, 693–697. [CrossRef] [PubMed]
    [Google Scholar]
  21. Larpent, J.-P. & Larpent-Gourgaud, M. (1985). Manuel Pratique de Microbiologie. Paris: Hermann (in French).
  22. Lim J.-M. , Jeon C. O. , Lee J.-C. , Song S.-M. , Kim K.-Y. , Kim C.-J. . ( 2006; ). Marinimicrobium koreense gen. nov., sp. nov. and Marinimicrobium agarilyticum sp. nov., novel moderately halotolerant bacteria isolated from tidal flat sediment in Korea. . Int J Syst Evol Microbiol 56:, 653–657. [CrossRef] [PubMed]
    [Google Scholar]
  23. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–216. [CrossRef]
    [Google Scholar]
  24. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  25. Martín S. , Márquez M. C. , Sánchez-Porro C. , Mellado E. , Arahal D. R. , Ventosa A. . ( 2003; ). Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. . Int J Syst Evol Microbiol 53:, 1383–1387. [CrossRef] [PubMed]
    [Google Scholar]
  26. Mata J. A. , Martínez-Cánovas J. , Quesada E. , Béjar V. . ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25:, 360–375. [CrossRef] [PubMed]
    [Google Scholar]
  27. Romanenko L. A. , Schumann P. , Rohde M. , Zhukova N. V. , Mikhailov V. V. , Stackebrandt E. . ( 2005; ). Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. . Int J Syst Evol Microbiol 55:, 143–148. [CrossRef]
    [Google Scholar]
  28. Saiki R. K. , Gelfand D. H. , Stoffel S. , Scharf S. J. , Higuchi R. , Horn G. T. , Mullis K. B. , Erlich H. A. . ( 1988; ). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. . Science 239:, 487–491. [CrossRef] [PubMed]
    [Google Scholar]
  29. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Shieh W. Y. , Jean W. D. , Lin Y. T. , Tseng M. . ( 2003; ). Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. . Can J Microbiol 49:, 244–252. [CrossRef] [PubMed]
    [Google Scholar]
  31. Smibert R. M. , Krieg N. R. . ( 1981; ). General characterization. . In Manual of Methods for General Bacteriology, pp. 409–443. Edited by Gerhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. D. , Wood W. A. , Krieg N. R. , Phillips G. B. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  32. Subov, N. N. (1931). Oceanographical Tables. Moscow: USSR Oceanographic Institute Hydrometeorological Commission (in Russian).
  33. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  34. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  35. Urios L. , Intertaglia L. , Lesongeur F. , Lebaron P. . ( 2008a; ). Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. . Int J Syst Evol Microbiol 58:, 1233–1237. [CrossRef] [PubMed]
    [Google Scholar]
  36. Urios L. , Agogué H. , Intertaglia L. , Lesongeur F. , Lebaron P. . ( 2008b; ). Melitea salexigens gen. nov., sp. nov., a gammaproteobacterium from the Mediterranean Sea. . Int J Syst Evol Microbiol 58:, 2479–2483. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ventosa A. , Quesada E. , Rodriguez-Valera F. , Ruiz-Berraquero F. , Ramos-Cormenzana A. . ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  38. Vogel B. F. , Venkateswaran K. , Christensen H. , Falsen E. , Christiansen G. , Gram L. . ( 2000; ). Polyphasic taxonomic approach in the description of Alishewanella fetalis gen. nov., sp. nov., isolated from a human foetus. . Int J Syst Evol Microbiol 50:, 1133–1142. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wang C.-Y. , Ng C.-C. , Tzeng W.-S. , Shyu Y.-T. . ( 2009; ). Marinobacter szutsaonensis sp. nov., isolated from a solar saltern. . Int J Syst Evol Microbiol 59:, 2605–2609. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yi H. , Bae K. S. , Chun J. . ( 2004; ). Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii . . Int J Syst Evol Microbiol 54:, 571–576. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yoon J.-H. , Yeo S.-H. , Kim I.-G. , Oh T.-K. . ( 2004; ). Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 54:, 1799–1803. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027284-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027284-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2210 - 2214

Maximum-parsimony phylogenetic tree based on 16S rRNA gene sequences showing the relationship of sp. nov. Set74 with other members of the genus . [PDF](47 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error