1887

Abstract

Strain K11 was isolated from activated sludge of a municipal wastewater-treatment plant. Phylogenetic analysis of the 16S rRNA gene sequence revealed that it represents a distinct line of descent within the . The novel strain was a Gram-negative, catalase- and oxidase-positive, non-motile, straight to slightly curved rod. Polyhydroxyalkanoate granules were stored intracellularly as reserve material. Colonies on agar plates were small, regular and characterized by a water-insoluble yellow pigment. Unbranched fatty acids 16 : 17, 16 : 0 and 18 : 17 dominated the cellular fatty acid pattern and ubiquinone-8 (Q-8) was the major component of the respiratory lipoquinones, both traits typical of members of the . A distinguishing characteristic was the presence of the two hydroxy fatty acids 10 : 0 3-OH and 12 : 0 2-OH, each in significant amounts. The G+C content of the DNA was 59 mol%. Strain K11 was capable of aerobic chemolithoheterotrophic growth using thiosulfate as an additional substrate, but could not grow autotrophically with thiosulfate or hydrogen. Facultative anaerobic growth was possible with nitrate and nitrite as electron acceptors, but not with ferric iron, sulfate or by fermentation. The sole end product of denitrification was NO; nitrite accumulated only transiently in small amounts. Based upon phylogenetic and phenotypic evidence, it is proposed to establish the novel taxon gen. nov., sp. nov., represented by the type strain K11 (=DSM 14619=JCM 11629). was among the phylogenetically most closely related species to strain K11. This species has been wrongly classified, and it is proposed to reclassify it as gen. nov., comb. nov. The type strain is ATCC 19624 (=DSM 9158).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02727-0
2004-01-01
2024-09-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540099.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02727-0&mimeType=html&fmt=ahah

References

  1. Bazylinski D. A., Palome N., Blakemore N. A., Blakemore R. P. 1986; Denitrification by Chromobacterium violaceum . Appl Environ Microbiol 52:696–699
    [Google Scholar]
  2. Berglund F., Sörbo B. H. 1960; Turbidimetric analysis of inorganic sulfate in serum, plasma and urine. Scand J Clin Lab Invest 12:147–153 [CrossRef]
    [Google Scholar]
  3. Blümel S., Busse H.-J., Stolz A., Kämpfer P. 2001; Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 51:1831–1837 [CrossRef]
    [Google Scholar]
  4. Bryant M. P. 1972; Commentary on the Hungate technique for the culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328
    [Google Scholar]
  5. Burgess J. E., Colliver B. B., Stuetz R. M., Stephenson T. 2002; Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure. J Ind Microbiol Biotechnol 29:309–313 [CrossRef]
    [Google Scholar]
  6. Canale-Parola E., Rosenthal S. L., Kupfer D. G. 1966; Morphological and physiological characteristics of Spirillum gracile sp. n. Antonie van Leeuwenhoek 32:113–124 [CrossRef]
    [Google Scholar]
  7. Chang Y.-H., Han J., Chun J., Lee K. C., Rhee M.-S., Kim Y.-B., Bae K. S. 2002; Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol 52:377–381
    [Google Scholar]
  8. Chen M.-Y., Tsay S.-S., Chen K.-Y., Shi Y.-C., Lin Y.-T., Lin G.-H. 2002; Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs. Int J Syst Evol Microbiol 52:2155–2161 [CrossRef]
    [Google Scholar]
  9. Christensen S., Tiedje J. M. 1988; Sub-parts-per-billion nitrate method: use of an N2O-producing denitrifier to convert NO3 or 15NO3 to N2O. Appl Environ Microbiol 54:1409–1413
    [Google Scholar]
  10. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754
    [Google Scholar]
  11. Denariaz G., Payne W. J., Le Gall J. 1989; A halophilic denitrifier, Bacillus halodenitrificans sp. nov. Int J Syst Bacteriol 39:145–151 [CrossRef]
    [Google Scholar]
  12. Dickinson R. E., Cicerone R. J. 1986; Future global warming from atmospheric trace gases. Nature 319:109–115 [CrossRef]
    [Google Scholar]
  13. Ding L., Yokota A. 2002; Phylogenetic analysis of the genus Aquaspirillum based on 16S rRNA gene sequences. FEMS Microbiol Lett 212:165–169 [CrossRef]
    [Google Scholar]
  14. Etchebehere C., Errazquin M. I., Dabert P., Moletta R., Muxí L. 2001; Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int J Syst Evol Microbiol 51:977–983 [CrossRef]
    [Google Scholar]
  15. Gardan L., Dauga C., Prior P., Gillis M., Saddler G. S. 2000; Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium. Int J Syst Evol Microbiol 50:235–246 [CrossRef]
    [Google Scholar]
  16. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Gumaelius L., Magnusson G., Pettersson B., Dalhammer G. 2001; Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51:999–1006 [CrossRef]
    [Google Scholar]
  18. Hamana K., Sakane T., Yokota A. 1994; Polyamine analysis of the genera Aquaspirillum , Magnetospirillum , Oceanospirillum and Spirillum . J Gen Appl Microbiol 40:75–82 [CrossRef]
    [Google Scholar]
  19. Heulin T., Barakat M., Christen R., Lesourd M., Sutra L., De Luca G., Achouak W. 2003; Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov. cyst-producing bacteria isolated from subdesert soil in Tunisia. Int J Syst Evol Microbiol 53:589–594 [CrossRef]
    [Google Scholar]
  20. Hungate R. E. 1950; The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49
    [Google Scholar]
  21. Hylemon P. B., Wells J. S. Jr, Krieg N. R., Jannasch H. W. 1973; The genus Spirillum : a taxonomic study. Int J Syst Bacteriol 23:340–380 [CrossRef]
    [Google Scholar]
  22. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  23. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  24. Kämpfer P., Erhart R., Beimfohr C., Böhringer J., Wagner M., Amann R. 1996; Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes. Microb Ecol 32:101–121
    [Google Scholar]
  25. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of “ Pseudomonas azotocolligans ” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  26. Kelly D. P., Chambers L. A., Trudinger P. A. 1969; Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41:898–901 [CrossRef]
    [Google Scholar]
  27. Ludwig W., Strunk O. 1997; arb – a software environment for sequence data. http://www.arb-home.de
  28. Malik K. A., Schlegel H. G. 1981; Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol Lett 11:63–67 [CrossRef]
    [Google Scholar]
  29. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  30. Manz W., Wagner M., Amann R., Schleifer K.-H. 1994; In situ characterization of the microbial consortia active in two wastewater treatment plants. Water Res 28:1715–1723 [CrossRef]
    [Google Scholar]
  31. Mechichi T., Stackebrandt E., Fuchs G. 2003; Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing β -proteobacterium. Int J Syst Evol Microbiol 53:147–152 [CrossRef]
    [Google Scholar]
  32. Platen H., Temmes A., Schink B. 1990; Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov. Arch Microbiol 154:355–361
    [Google Scholar]
  33. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  34. Rouf M. A., Stokes J. L. 1964; Morphology, nutrition and physiology of Sphaerotilus discophorus . Arch Microbiol 49:132–149
    [Google Scholar]
  35. Sakane T., Yokota A. 1994; Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic spirilla, the genera Aquaspirillum , Magnetospirillum and Oceanospirillum . Syst Appl Microbiol 17:128–134 [CrossRef]
    [Google Scholar]
  36. Schulze R., Spring S., Amann R., Huber I., Ludwig W., Schleifer K.-H., Kämpfer P. 1999; Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 22:205–214 [CrossRef]
    [Google Scholar]
  37. Snaidr J., Amann R., Huber I., Ludwig W., Schleifer K.-H. 1997; Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896
    [Google Scholar]
  38. Sommer J., Ciplak G., Linn A., Summer E., Benckiser G., Ottow J. C. G. 1998; Quantification of emitted and retained N2O in a municipal waste water treatment plant with activated sludge and nitrifying-denitrifying units. Agribiol Res 51:59–73
    [Google Scholar]
  39. Sorokin D. Y., Teske A., Robertson L. A., Kuenen J. G. 1996; Sulfur cycling in Catenococcus thiocyclus . FEMS Microbiol Ecol 30:113–123
    [Google Scholar]
  40. Spring S., Kämpfer P., Schleifer K. H. 2001; Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 51:1463–1470
    [Google Scholar]
  41. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  42. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [CrossRef]
    [Google Scholar]
  43. Vishniac W., Santer M. 1957; The thiobacilli. Bacteriol Rev 21:195–213
    [Google Scholar]
  44. Wagner M., Amann R. 1997; Molecular techniques for determining microbial community structures in activated sludge. In Microbial Community Analysis: the Key to the Design of Bacterial Wastewater Treatment Systems . pp  61–72 IAWQ Scientific Technical Report no. 5 Edited by Cloete T. E., Muyima N. Y. O. Cambridge: Cambridge University Press;
    [Google Scholar]
  45. Wagner M., Loy A. 2002; Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218–227 [CrossRef]
    [Google Scholar]
  46. Wagner M., Amann R., Lemmer H., Schleifer K.-H. 1993; Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59:1520–1525
    [Google Scholar]
  47. Wagner M., Amann R., Kämpfer P., Assmus B., Hartmann A., Hutzler P., Springer N., Schleifer K.-H. 1994a; Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol 17:405–417 [CrossRef]
    [Google Scholar]
  48. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K.-H. 1994b; Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60:792–800
    [Google Scholar]
  49. Wagner M., Loy A., Nogueira R., Purkhold U., Lee N., Daims H. 2002; Microbial community composition and function in wastewater treatment plants. Antonie van Leeuwenhoek 81:665–680 [CrossRef]
    [Google Scholar]
  50. Wallner G., Erhart R., Amann R. 1995; Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl Environ Microbiol 61:1859–1866
    [Google Scholar]
  51. Weiske A., Benckiser G., Herbert T., Ottow J. C. G. 2001; Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils 34:109–117 [CrossRef]
    [Google Scholar]
  52. Wen A., Fegan M., Hayward C., Chakraborty S., Sly L. I. 1999; Phylogenetic relationships among members of the Comamonadaceae , and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al . 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49:567–576 [CrossRef]
    [Google Scholar]
  53. Wenzhofer F., Kriszt B., Benckiser G., Ottow J. C. G. 1997; Nitrous oxide (N2O) release by Streptomyces nitrosporeus in a sandy loam soil as affected by pO2, pH and amount of easily decomposable organic carbon. Z Pflanzenernaehr Bodenkd 160:201–208 [CrossRef]
    [Google Scholar]
  54. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02727-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02727-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error