1887

Abstract

A polyphasic taxonomic study was conducted on strain HK31, a moderately halophilic bacterium isolated from a solar saltern in Chefchaouen, Morocco. The strain was a Gram-reaction-negative, oxidase-positive rod, which was motile by means of peritrichous flagella. The strain required NaCl for growth and grew in salt concentrations (mixture of sea salts) of 0.5–20 % (w/v) (optimum 5–7.5 %, w/v), at 25–45 °C (optimum 32 °C) and at pH 5–10 (optimum pH 6–9). Strain HK31 did not produce acids from sugars and its metabolism was respiratory, using oxygen as terminal electron acceptor. The strain was positive for the accumulation of poly-β-hydroxyalkanoate granules and formed mucoid colonies due to the excretion of an exopolysaccharide. The DNA G+C content was 61.5 mol%. 16S rRNA gene sequence analysis indicated that it belonged to the genus in the class . The most phylogenetically related species was , with which strain HK31 showed a 16S rRNA gene sequence similarity of 96.48 %. Its major fatty acids were Cω7, C, C cyclo ω8 , Cω7/iso-C 2-OH and C 3-OH and the predominant respiratory lipoquinone was ubiquinone with nine isoprene units (Q-9). Based on the evidence provided in this study, strain HK31 ( = CECT 7698  = LMG 25695) represents a novel species of the genus , for which the name is proposed.

Funding
This study was supported by the:
  • Spanish Ministerio de Educación y Ciencia (Award CGL2008-02399/BOS and CGL 2005-05947)
  • Consejería de Educación Ciencia y Empresa of the Andalucian Regional Government (Award P06-CVI-01850)
  • Plan Andaluz de Investigación
  • Foundation L’ORÉAL/UNESCO Co-Sponsored Fellowships for Young Women in Life Sciences
  • National Center for Scientific Research and Technology in Morocco (CNRST)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027268-0
2011-11-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2600.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027268-0&mimeType=html&fmt=ahah

References

  1. Anan’ina L. N., Plotnikova E. G., Gavrish E. Iu., Demakov V. A., Evtushenko L. I. 2007; Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association. Mikrobiologiia 76:324–330 (original Russian text, pp. 369–376) [PubMed]
    [Google Scholar]
  2. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. 2002; Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina . Syst Appl Microbiol 25:207–211 [View Article][PubMed]
    [Google Scholar]
  3. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Béjar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [View Article][PubMed]
    [Google Scholar]
  4. Arias S., del Moral A., Ferrer M. R., Tallon R., Quesada E., Béjar V. 2003; Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326 [View Article][PubMed]
    [Google Scholar]
  5. Ben Ali Gam Z., Abdelkafi S., Casalot L., Tholozan J. L., Oueslati R., Labat M. 2007; Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57:2307–2313 [View Article][PubMed]
    [Google Scholar]
  6. Bouchotroch S., Quesada E., del Moral A., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [View Article][PubMed]
    [Google Scholar]
  7. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  8. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Bauman et al., 1993), Halomonas (Vreeland et al., 1980), and Halovibrio (Fendrich, 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons, 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [View Article]
    [Google Scholar]
  9. Euzéby J. P. 2010; List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.cict.fr
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  11. Ferragut C., Leclerc H. 1976; Étude comparative des méthodes de détermination du T m de l’ADN bacterien. Ann Microbiol 127:223–235 (in French)
    [Google Scholar]
  12. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  13. Garriga M., Ehrmann M. A., Arnau J., Hugas M., Vogel R. F. 1998; Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48:677–686 [View Article][PubMed]
    [Google Scholar]
  14. González-Domenech C. M., Béjar V., Martínez-Checa F., Quesada E. 2008a; Halomonas nitroreducens sp. nov., a novel nitrate- and nitrite-reducing species. Int J Syst Evol Microbiol 58:872–876 [View Article][PubMed]
    [Google Scholar]
  15. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V. 2008b; Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 58:803–809 [View Article][PubMed]
    [Google Scholar]
  16. Jeon C. O., Lim J. M., Lee J. R., Lee G. S., Park D. J., Lee J. C., Oh H. W., Kim C. J. 2007; Halomonas kribbensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 57:2194–2198 [View Article][PubMed]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley;
    [Google Scholar]
  19. Margesin R., Schinner F. 2001; Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83 [View Article][PubMed]
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  21. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E. 2004a; Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332 [View Article][PubMed]
    [Google Scholar]
  22. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. 2004b; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [View Article][PubMed]
    [Google Scholar]
  23. Martínez-Checa F., Béjar V., Martínez-Cánovas M. J., Llamas I., Quesada E. 2005; Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 55:2007–2011 [View Article][PubMed]
    [Google Scholar]
  24. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [View Article][PubMed]
    [Google Scholar]
  25. Mata J. A., Béjar V., Llamas I., Arias S., Bressollier P., Tallon R., Urdaci M. C., Quesada E. 2006; Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis . Res Microbiol 157:827–835 [View Article][PubMed]
    [Google Scholar]
  26. Moraine R. A., Rogovin P. 1966; Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8:511–524 [View Article]
    [Google Scholar]
  27. Ntougias S., Zervakis G. I., Fasseas C. 2007; Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 57:1975–1983 [View Article][PubMed]
    [Google Scholar]
  28. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K. 1993; Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337 [View Article][PubMed]
    [Google Scholar]
  29. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, 2nd edn. pp. 277–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  30. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA composition and levels of DNA–DNA hybridization. In Chemical Methods in Bacterial Systematics pp. 67–93 Edited by Goodfellow M., Minnikin E. London: Academic Press;
    [Google Scholar]
  31. Quesada E., Ventosa A., Rodríguez-Valera F., Ramos-Cormenzana A. 1983; Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657
    [Google Scholar]
  32. Quesada E., Valderrama M. J., Béjar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1990; Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile Gram-negative rod. Int J Syst Bacteriol 40:261–267 [View Article]
    [Google Scholar]
  33. Quesada E., Béjar V., Ferrer M. R., Calvo C., Llamas I., Martínez-Checa F., Arias S., Ruiz-García C., Páez R. et al. other authors 2004; Moderately halophilic, exopolysaccharide-producing bacteria. In Halophilic Microorganisms pp. 297–314 Edited by Ventosa A. Heildelberg: Springer;
    [Google Scholar]
  34. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotropic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [View Article]
    [Google Scholar]
  35. Romano I., Nicolaus B., Lama L., Manca M. C., Gambacorta A. 1996; Characterization of a haloalkalophilic strictly aerobic bacterium, isolated from Pantelleria island. Syst Appl Microbiol 19:326–333 [CrossRef]
    [Google Scholar]
  36. Sánchez-Porro C., de la Haba R. R., Soto-Ramírez N., Márquez M. C., Montalvo-Rodríguez R., Ventosa A. 2009; Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov.. Int J Syst Evol Microbiol 59:397–405 [View Article][PubMed]
    [Google Scholar]
  37. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  38. Thompson J. D., Gibson T. J., Plewniak K., Jeanmougin F., Higgins D. G. 1997; The clustal_x window interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article]
    [Google Scholar]
  39. Ventosa A., Nieto J. J. 1995; Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94 [View Article]
    [Google Scholar]
  40. Ventosa A., Quesada E., Rodríguez-Valera F., Ruíz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  41. Ventosa A., Gutierrez M. C., Garcia M. T., Ruiz-Berraquero F. 1989; Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev.. Int J Syst Bacteriol 39:382–386 [View Article]
    [Google Scholar]
  42. Vreeland R. H. 2005; Genus I. Halomonas . In Bergey’s Manual of Systematic Bacteriology, The Proteobacteria, part B: The Gammaproteobacteria, 2nd edn. vol. 2 pp. 300–303 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  43. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [View Article]
    [Google Scholar]
  44. Wang Y., Tang S. K., Lou K., Mao P. H., Jin X., Jiang C. L., Xu L. H., Li W. J. 2008; Halomonas lutea sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 58:2065–2069 [View Article][PubMed]
    [Google Scholar]
  45. Wang Y., Tang S. K., Lou K., Lee J. C., Jeon C. O., Xu L. H., Kim C. J., Li W. J. 2009; Aidingimonas halophila gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 59:3088–3094 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.027268-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027268-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error