1887

Abstract

A xylanolytic and phosphate-solubilizing bacterium isolated from sawdust of in Salamanca was characterized by a polyphasic approach. The novel strain, designated XIL02, was Gram-positive, aerobic, catalase- and oxidase-negative, rod-shaped and non-motile. Phylogenetically and chemotaxonomically, it was related to members of the genus . According to 16S rRNA gene sequence analysis, it is closely related to and ; however, DNA–DNA hybridization showed reassociation values less than 70 % with the type strains of these species. In chemotaxonomic analyses, the major menaquinones detected were MK-12, MK-13 and MK-11 and the major fatty acids were anteiso-C, anteiso-C and iso-C; the peptidoglycan was of the type B2. The G+C content determined was 69 mol%. Based on the present data, it is proposed that strain XIL02 (=LMG 20991=CECT 5976) be classified as the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02724-0
2004-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540513.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02724-0&mimeType=html&fmt=ahah

References

  1. Antoun H., Beauchamp C. J., Goussard N., Chabot R., Lalande R. 1998; Potential of Rhizobium and Bradyrhizobium species as growth promoting rhizobacteria on non-legumes: effect on radishes ( Raphanus sativus L.). Plant Soil 204:57–67 [CrossRef]
    [Google Scholar]
  2. Beg Q. K., Bhushan B., Kapoor M., Hoondal G. S. 2000; Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol 24:396–402 [CrossRef]
    [Google Scholar]
  3. Behrendt U., Ulrich A., Schumann P. 2001; Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al . 1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol 51:1267–1276
    [Google Scholar]
  4. Bond P. L., Hugenholtz P., Keller J., Blackall L. L. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916
    [Google Scholar]
  5. Busch J. E., Stutzenberger F. J. 1997; Xylanase biosynthesis in Thermomonospora curvata is not repressed by glucose. Bioresour Technol 60:81–85 [CrossRef]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  7. Chabot R., Beauchamp C. J., Kloepper J. W., Antoun H. 1998; Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 30:1615–1618 [CrossRef]
    [Google Scholar]
  8. Chamberlain K., Crawford D. L. 2000; Thatch biodegradation and antifungal activities of two lignocellulolytic Streptomyces strains in laboratory cultures and in golf green turfgrass. Can J Microbiol 46:550–558 [CrossRef]
    [Google Scholar]
  9. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [CrossRef]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  11. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  13. Fitch W. M. 1971; Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  14. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  15. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer or a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  18. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  19. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Burghardt J., Webb R. I., Soddell J. A., Rees G. N. 1999; Friedmanniella spumicola sp. nov. and Friedmanniella capsulata sp. nov. from activated sludge foam: Gram-positive cocci that grow in aggregates of repeating groups of cocci. Int J Syst Bacteriol 49:1667–1680 [CrossRef]
    [Google Scholar]
  20. Matsuyama H., Kawasaki K., Yumoto I., Shida O. 1999; Microbacterium kitamiense sp. nov., a new polysaccharide-producing bacterium isolated from the wastewater of a sugar-beet factory. Int J Syst Bacteriol 49:1353–1357 [CrossRef]
    [Google Scholar]
  21. Mayorga-Reyes L., Morales Y., Salgado L. M., Ortega A., Ponce-Loyola T. 2002; Cellulomonas flavigena : characterization of an endo-1,4-xylanase tightly induced by sugarcane bagasse. FEMS Microbiol Lett 214:205–209 [CrossRef]
    [Google Scholar]
  22. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  23. Peix A., Rivas-Boyero A. A., Mateos P. F., Rodríguez-Barrueco C., Martínez-Molina E., Velázquez E. 2001; Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110 [CrossRef]
    [Google Scholar]
  24. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 [CrossRef]
    [Google Scholar]
  25. Rivas R., Sánchez M., Trujillo M. E., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Velázquez E. 2003; Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree ( Ulmus nigra ). Int J Syst Evol Microbiol 53:99–103 [CrossRef]
    [Google Scholar]
  26. Rodríguez H., Fraga R. 1999; Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339 [CrossRef]
    [Google Scholar]
  27. Ruiz-Arribas A., Fernández-Abalos J. M., Sánchez P., Garda A. L., Santamaría R. I. 1995; Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Appl Environ Microbiol 61:2414–2419
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  30. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 34:407–477
    [Google Scholar]
  31. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  32. Takeuchi M., Hatano K. 1998; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al . in a redefined genus Microbacterium . Int J Syst Bacteriol 48:739–747 [CrossRef]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  34. Wang F., Whitaker R. D., Batt C. A. 1998; Production of glucose isomerase in a recombinant strain of Streptomyces lividans . Appl Microbiol Technol 50:65–70 [CrossRef]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  36. Zimmermann O., Spröer C., Kroppenstedt R. M., Fuchs E., Köchel H. G., Funke G. 1998; Corynebacterium thomssenii sp. nov., a Corynebacterium with N -acetyl- β -glucosaminidase activity from human clinical specimens. Int J Syst Bacteriol 48:489–494 [CrossRef]
    [Google Scholar]
  37. Zlamala C., Schumann P., Kämpfer P., Valens M, Rosselló-Mora R., Lubitz W, Busse H.-J. 2002; Microbacterium aerolatum sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 52:1229–1234 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02724-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02724-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error