1887

Abstract

A Gram-reaction-negative bacterial strain, designated GIMN1.005, was isolated from a forest soil sample in Vietnam. The isolate was yellow-pigmented, strictly aerobic, and unable to grow below 5 °C or above 37 °C and in the presence of more than 2.0 % NaCl. Cells were non-motile, non-gliding and non-spore-forming. The yellow pigment was of the flexirubin type, non-diffusible and non-fluorescent. Analysis of 16S rRNA gene sequences showed that strain GIMN1.005 occupied a distinct lineage within the genus , with sequence similarity values of 98.6, 98.5 and 98.3 % to KCTC 12894, KACC 12501 and GIFU 1347, respectively. The level of DNA–DNA relatedness between strain GIMN1.005 and KACC 12501 was <30 %. The DNA G+C content of strain GIMN1.005 was 42.1 mol%. The predominant cellular fatty acids were iso-C, iso-C 3-OH and summed feature 3 (Cω7 and/or Cω6); menaquinone 6 (MK-6) was the sole respiratory quinone. On the basis of phenotypic properties and phylogenetic distinctiveness, strain GIMN1.005 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GIMN1.005 ( = CCTCC M 209230 = NRRL B-59550).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027201-0
2012-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/827.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027201-0&mimeType=html&fmt=ahah

References

  1. Benmalek Y. , Cayol J. L. , Bouanane N. A. , Hacene H. , Fauque G. , Fardeau M. L. . ( 2010; ). Chryseobacterium solincola sp. nov., isolated from soil. . Int J Syst Evol Microbiol 60:, 1876–1880. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bernardet J.-F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bernardet J.-F. , Bruun B. , Hugo C. J. . ( 2006; ). The genera Chryseobacterium and Elizabethkingia . . In The Prokaryotes, a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 638–676. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K.-H. , Stackebrandt E. . . New York:: Springer;.
    [Google Scholar]
  4. Bernardet J.-F. , Hugo C. , Bruun B. . ( 2010; ). Genus VII. Chryseobacterium Vandamme et al. 1994. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 180–196. Edited by Krieg N. R. , Staley J. T. , Brown D. R. , Hedlund B. P. , Paster B. J. , Ward N. L. , Ludwig W. , Whitman W. . . New York:: Springer;.
    [Google Scholar]
  5. Brosius J. , Dull T. J. , Sleeter D. D. , Noller H. F. . ( 1981; ). Gene organization and primary structure of a ribosomal DNA operon from Escherichia coli . . J Mol Biol 148:, 107–127. [CrossRef]
    [Google Scholar]
  6. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  7. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230.[PubMed] [CrossRef]
    [Google Scholar]
  8. de Beer H. , Hugo C. J. , Jooste P. J. , Willems A. , Vancanneyt M. , Coenye T. , Vandamme P. A. R. . ( 2005; ). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. . Int J Syst Evol Microbiol 55:, 2149–2153. [CrossRef] [PubMed]
    [Google Scholar]
  9. de Beer H. , Hugo C. J. , Jooste P. J. , Vancanneyt M. , Coenye T. , Vandamme P. . ( 2006; ). Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. . Int J Syst Evol Microbiol 56:, 1317–1322. [CrossRef] [PubMed]
    [Google Scholar]
  10. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  12. Hantsis-Zacharov E. , Senderovich Y. , Halpern M. . ( 2008; ). Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. . Int J Syst Evol Microbiol 58:, 1024–1028. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hugo C. J. , Segers P. , Hoste B. , Vancanneyt M. , Kersters K. . ( 2003; ). Chryseobacterium joostei sp. nov., isolated from the dairy environment. . Int J Syst Evol Microbiol 53:, 771–777. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ilardi P. , Fernández J. , Avendaño-Herrera R. . ( 2009; ). Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. . Int J Syst Evol Microbiol 59:, 3001–3005. [CrossRef] [PubMed]
    [Google Scholar]
  15. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;.
    [Google Scholar]
  16. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  17. Kämpfer P. , Dreyer U. , Neef A. , Dott W. , Busse H. J. . ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from wastewater. . Int J Syst Evol Microbiol 53:, 93–97. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kämpfer P. , Arun A. B. , Young C. C. , Chen W. M. , Sridhar K. R. , Rekha P. D. . ( 2010; ). Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. . Int J Syst Evol Microbiol 60:, 1765–1769. [CrossRef] [PubMed]
    [Google Scholar]
  19. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Park M. S. , Jung S. R. , Lee K. H. , Lee M. S. , Do J. O. , Kim S. B. , Bae K. S. . ( 2006; ). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. . Int J Syst Evol Microbiol 56:, 433–438. [CrossRef] [PubMed]
    [Google Scholar]
  21. Park S. C. , Kim M. S. , Baik K. S. , Kim E. M. , Rhee M. S. , Seong C. N. . ( 2008; ). Chryseobacterium aquifrigidense sp. nov., isolated from a water-cooling system. . Int J Syst Evol Microbiol 58:, 607–611. [CrossRef] [PubMed]
    [Google Scholar]
  22. Pires C. , Carvalho M. F. , De Marco P. , Magan N. , Castro P. M. L. . ( 2010; ). Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. . Int J Syst Evol Microbiol 60:, 402–407. [CrossRef] [PubMed]
    [Google Scholar]
  23. Quan Z. X. , Kim K. K. , Kim M. K. , Jin L. , Lee S. T. . ( 2007; ). Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. . Int J Syst Evol Microbiol 57:, 141–145. [CrossRef] [PubMed]
    [Google Scholar]
  24. Rzhetsky A. , Nei M. . ( 1992; ). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Skerman V. B. D. . ( 1967; ). A Guide to the Identification of the Genera of Bacteria, , 2nd edn.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  27. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  28. Swofford D. L. . ( 1993; ). paup: phylogenetic analysis using parsimony, version 3.1.1.. Champaign, IL:: Illinois Natural History Survey;.
  29. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  30. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  31. Vandamme P. , Bernardet J.-F. , Segers P. , Kersters K. , Holmes B. . ( 1994; ). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev.. Int J Syst Bacteriol 44:, 827–831. [CrossRef]
    [Google Scholar]
  32. Weon H. Y. , Kim B. Y. , Yoo S. H. , Kwon S. W. , Stackebrandt E. , Go S. J. . ( 2008; ). Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. . Int J Syst Evol Microbiol 58:, 470–473. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wilson K. . ( 1987; ). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. M. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . . New York:: Green Publishing & Wiley-Interscience;.
    [Google Scholar]
  34. Xie C. H. , Yokota A. . ( 2003; ). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49:, 345–349. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yabuuchi E. , Kaneko T. , Yano I. , Moss C. W. , Miyoshi N. . ( 1983; ). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and Iib. . Int J Syst Bacteriol 33:, 580–598. [CrossRef]
    [Google Scholar]
  36. Yamaguchi S. , Yokoe M. . ( 2000; ). A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. . Appl Environ Microbiol 66:, 3337–3343. [CrossRef] [PubMed]
    [Google Scholar]
  37. Yassin A. F. , Hupfer H. , Siering C. , Busse H. J. . ( 2010; ). Chryseobacterium treverense sp. nov., isolated from a human clinical source. . Int J Syst Evol Microbiol 60:, 1993–1998. [CrossRef] [PubMed]
    [Google Scholar]
  38. Yoon J. H. , Kang S. J. , Oh T. K. . ( 2007; ). Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. . Int J Syst Evol Microbiol 57:, 1355–1359. [CrossRef] [PubMed]
    [Google Scholar]
  39. Young C. C. , Kämpfer P. K. , Shen F. T. , Lai W. A. , Arun A. B. . ( 2005; ). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). . Int J Syst Evol Microbiol 55:, 423–426. [CrossRef] [PubMed]
    [Google Scholar]
  40. Zhou Y. , Dong J. , Wang X. , Huang X. , Zhang K. Y. , Zhang Y. Q. , Guo Y. F. , Lai R. , Li W. J. . ( 2007; ). Chryseobacterium flavum sp. nov., isolated from polluted soil. . Int J Syst Evol Microbiol 57:, 1765–1769. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027201-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027201-0
Loading

Data & Media loading...

Supplements

Supplementary figures 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error