1887

Abstract

A Gram-reaction-negative bacterial strain, designated GIMN1.005, was isolated from a forest soil sample in Vietnam. The isolate was yellow-pigmented, strictly aerobic, and unable to grow below 5 °C or above 37 °C and in the presence of more than 2.0 % NaCl. Cells were non-motile, non-gliding and non-spore-forming. The yellow pigment was of the flexirubin type, non-diffusible and non-fluorescent. Analysis of 16S rRNA gene sequences showed that strain GIMN1.005 occupied a distinct lineage within the genus , with sequence similarity values of 98.6, 98.5 and 98.3 % to KCTC 12894, KACC 12501 and GIFU 1347, respectively. The level of DNA–DNA relatedness between strain GIMN1.005 and KACC 12501 was <30 %. The DNA G+C content of strain GIMN1.005 was 42.1 mol%. The predominant cellular fatty acids were iso-C, iso-C 3-OH and summed feature 3 (Cω7 and/or Cω6); menaquinone 6 (MK-6) was the sole respiratory quinone. On the basis of phenotypic properties and phylogenetic distinctiveness, strain GIMN1.005 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GIMN1.005 ( = CCTCC M 209230 = NRRL B-59550).

Funding
This study was supported by the:
  • , International S&T Cooperation Program of China , (Award 2008DFA31560)
  • , Guangdong Ministry of Science and Technology, PR China , (Award 2009B050300003)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027201-0
2012-04-01
2020-07-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/827.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027201-0&mimeType=html&fmt=ahah

References

  1. Benmalek Y., Cayol J. L., Bouanane N. A., Hacene H., Fauque G., Fardeau M. L. 2010; Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:1876–1880 [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardet J.-F., Bruun B., Hugo C. J. 2006; The genera Chryseobacterium and Elizabethkingia . In The Prokaryotes, a Handbook on the Biology of Bacteria, 3rd edn. vol. 7 pp. 638–676 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  4. Bernardet J.-F., Hugo C., Bruun B. 2010; Genus VII. Chryseobacterium Vandamme et al. 1994. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 4 pp. 180–196 Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. New York: Springer;
    [Google Scholar]
  5. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal DNA operon from Escherichia coli . J Mol Biol 148:107–127 [CrossRef]
    [Google Scholar]
  6. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  8. de Beer H., Hugo C. J., Jooste P. J., Willems A., Vancanneyt M., Coenye T., Vandamme P. A. R. 2005; Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55:2149–2153 [CrossRef][PubMed]
    [Google Scholar]
  9. de Beer H., Hugo C. J., Jooste P. J., Vancanneyt M., Coenye T., Vandamme P. 2006; Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int J Syst Evol Microbiol 56:1317–1322 [CrossRef][PubMed]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  11. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Hantsis-Zacharov E., Senderovich Y., Halpern M. 2008; Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 58:1024–1028 [CrossRef][PubMed]
    [Google Scholar]
  13. Hugo C. J., Segers P., Hoste B., Vancanneyt M., Kersters K. 2003; Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53:771–777 [CrossRef][PubMed]
    [Google Scholar]
  14. Ilardi P., Fernández J., Avendaño-Herrera R. 2009; Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 59:3001–3005 [CrossRef][PubMed]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  17. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H. J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef][PubMed]
    [Google Scholar]
  18. Kämpfer P., Arun A. B., Young C. C., Chen W. M., Sridhar K. R., Rekha P. D. 2010; Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 60:1765–1769 [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Park M. S., Jung S. R., Lee K. H., Lee M. S., Do J. O., Kim S. B., Bae K. S. 2006; Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438 [CrossRef][PubMed]
    [Google Scholar]
  21. Park S. C., Kim M. S., Baik K. S., Kim E. M., Rhee M. S., Seong C. N. 2008; Chryseobacterium aquifrigidense sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 58:607–611 [CrossRef][PubMed]
    [Google Scholar]
  22. Pires C., Carvalho M. F., De Marco P., Magan N., Castro P. M. L. 2010; Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. Int J Syst Evol Microbiol 60:402–407 [CrossRef][PubMed]
    [Google Scholar]
  23. Quan Z. X., Kim K. K., Kim M. K., Jin L., Lee S. T. 2007; Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 57:141–145 [CrossRef][PubMed]
    [Google Scholar]
  24. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  26. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  27. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Swofford D. L. 1993; paup: phylogenetic analysis using parsimony, version 3.1.1.. Champaign, IL: Illinois Natural History Survey;
  29. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  31. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B. 1994; New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev.. Int J Syst Bacteriol 44:827–831 [CrossRef]
    [Google Scholar]
  32. Weon H. Y., Kim B. Y., Yoo S. H., Kwon S. W., Stackebrandt E., Go S. J. 2008; Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 58:470–473 [CrossRef][PubMed]
    [Google Scholar]
  33. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Green Publishing & Wiley-Interscience;
    [Google Scholar]
  34. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  35. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. 1983; Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and Iib. Int J Syst Bacteriol 33:580–598 [CrossRef]
    [Google Scholar]
  36. Yamaguchi S., Yokoe M. 2000; A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66:3337–3343 [CrossRef][PubMed]
    [Google Scholar]
  37. Yassin A. F., Hupfer H., Siering C., Busse H. J. 2010; Chryseobacterium treverense sp. nov., isolated from a human clinical source. Int J Syst Evol Microbiol 60:1993–1998 [CrossRef][PubMed]
    [Google Scholar]
  38. Yoon J. H., Kang S. J., Oh T. K. 2007; Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 57:1355–1359 [CrossRef][PubMed]
    [Google Scholar]
  39. Young C. C., Kämpfer P. K., Shen F. T., Lai W. A., Arun A. B. 2005; Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhou Y., Dong J., Wang X., Huang X., Zhang K. Y., Zhang Y. Q., Guo Y. F., Lai R., Li W. J. 2007; Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 57:1765–1769 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027201-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027201-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error