1887

Abstract

A novel marine sulfate-reducing bacterium, strain CV2803, which is able to oxidize aliphatic hydrocarbons, was isolated from a hydrocarbon-polluted marine sediment (Gulf of Fos, France). The cells were rod-shaped and slightly curved, measuring 0·6×2·2–5·5 μm. Strain CV2803 stained Gram-negative and was non-motile and non-spore-forming. Optimum growth occurred in the presence of 24 g NaCl l, at pH 7·5 and at a temperature between 28 and 35 °C. Strain CV2803 oxidized alkanes (from C to C) and alkenes (from C to C). The DNA G+C content was 41·4 mol%. Comparative sequence analyses of the 16S rRNA gene and dissimilatory sulfite reductase () gene and those of other sulfate-reducing bacteria, together with its phenotypic properties, indicated that strain CV2803 was a member of a distinct cluster that contained unnamed species. Therefore, strain CV2803 (=DSM 15576=ATCC BAA-743) is proposed as the type strain of a novel species in a new genus, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02717-0
2004-01-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540077.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02717-0&mimeType=html&fmt=ahah

References

  1. Aeckersberg F., Bak F., Widdel F. 1991; Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14 [CrossRef]
    [Google Scholar]
  2. Aeckersberg F., Rainey F. A., Widdel F. 1998; Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369 [CrossRef]
    [Google Scholar]
  3. Annweiler E., Materna A., Safinowski M., Kappler A., Richnow H. H., Michaelis W., Meckenstock R. U. 2000; Anaerobic degradation of 2-methylnaphthalene by sulfate-reducing enrichment culture. Appl Environ Microbiol 66:5329–5333 [CrossRef]
    [Google Scholar]
  4. Bak F., Pfennig N. 1987; Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189 [CrossRef]
    [Google Scholar]
  5. Beller H. R., Spormann A. M., Sharma P. K., Cole J. R., Reinhard M. 1996; Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl Environ Microbiol 62:1188–1196
    [Google Scholar]
  6. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Oullette B. F. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  7. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  8. Caldwell M. E., Garrett R. M., Prince R. C., Suflita J. M. 1998; Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ Sci Technol 32:2191–2195 [CrossRef]
    [Google Scholar]
  9. Caumette P., Baulaique R., Matheron R. 1988; Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas. Syst Appl Microbiol 10:284–292 [CrossRef]
    [Google Scholar]
  10. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [CrossRef]
    [Google Scholar]
  11. Coates J. D., Woodward J., Allen J., Philp P., Lovley D. R. 1997; Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63:3589–3593
    [Google Scholar]
  12. Davis J. B., Yarbrough H. F. 1966; Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans . Chem Geol 1:137–144 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  14. Galushko A., Minz D., Schink B., Widdel F. 1999; Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1:415–420 [CrossRef]
    [Google Scholar]
  15. Hall T. A. 1999; BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Harms G., Zengler K., Rabus R., Aeckersberg F., Minz D., Rossello-Mora R., Widdel F. 1999; Anaerobic oxidation of o -xylene, m -xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004
    [Google Scholar]
  17. Heider J., Spormann A. M., Beller H. R., Widdel F. 1999; Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  20. Kolmert A., Wikström P., Hallberg K. B. 2000; A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J Microbiol Methods 41:179–184 [CrossRef]
    [Google Scholar]
  21. Kropp K. G., Davidova I. A., Suflita J. M. 2000; Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66:5393–5398 [CrossRef]
    [Google Scholar]
  22. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  23. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  24. Meckenstock R. U., Annweiler E., Michaelis W., Richnow H. H., Schink B. 2000; Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:2743–2747 [CrossRef]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  26. Myhr S., Lillebø B.-L. P., Sunde E., Beeder J., Torsvik T. 2002; Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408 [CrossRef]
    [Google Scholar]
  27. Novelli G. D., ZoBell C. E. 1944; Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria. J Bacteriol 47:447–448
    [Google Scholar]
  28. Overmann J., Fischer U., Pfennig N. 1992; A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157:329–335 [CrossRef]
    [Google Scholar]
  29. Pfennig N., Trüper H. G. 1981; Isolation of members of the families Chromatiaceae and Chlorobiaceae . In The Prokaryotes vol. 1 pp  279–289 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  30. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306 [CrossRef]
    [Google Scholar]
  31. Pfennig N., Widdel F., Trüper H. G. 1981; The dissimilatory sulfate-reducing bacteria. In The Prokaryotes vol 1 pp  926–940 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  32. Postgate J. R. 1984 The Sulphate-reducing Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  33. Rabus R., Nordhaus R., Ludwig W., Widdel F. 1993; Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451
    [Google Scholar]
  34. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. 1994; Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458 [CrossRef]
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  36. So C. M., Young L. Y. 1999; Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976
    [Google Scholar]
  37. So C. M., Young L. Y. 2001; Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions. Environ Toxicol Chem 20:473–478 [CrossRef]
    [Google Scholar]
  38. Spormann A. M., Widdel F. 2000; Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105 [CrossRef]
    [Google Scholar]
  39. Vogel A. I. 1961 A Textbook of Quantitative Inorganic Analysis London: Longman;
    [Google Scholar]
  40. Wagner M., Roger A., Flax J., Brusseau G., Stahl D. 1998; Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982
    [Google Scholar]
  41. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes vol 4 pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  42. Wilkes H., Boreham C., Harms G., Zengler K., Rabus R. 2000; Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulfate-reducing bacteria. Org Geochem 31:101–115 [CrossRef]
    [Google Scholar]
  43. Zengler K., Richnow H. H., Rossello-Mora R., Michaelis W., Widdel F. 1999; Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269 [CrossRef]
    [Google Scholar]
  44. Zwolinski M. D., Harris R. F., Hickey W. J. 2000; Microbial consortia involved in the anaerobic degradation of hydrocarbons. Biodegradation 11:141–158 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02717-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02717-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error