1887

Abstract

A novel marine sulfate-reducing bacterium, strain CV2803, which is able to oxidize aliphatic hydrocarbons, was isolated from a hydrocarbon-polluted marine sediment (Gulf of Fos, France). The cells were rod-shaped and slightly curved, measuring 0·6×2·2–5·5 μm. Strain CV2803 stained Gram-negative and was non-motile and non-spore-forming. Optimum growth occurred in the presence of 24 g NaCl l, at pH 7·5 and at a temperature between 28 and 35 °C. Strain CV2803 oxidized alkanes (from C to C) and alkenes (from C to C). The DNA G+C content was 41·4 mol%. Comparative sequence analyses of the 16S rRNA gene and dissimilatory sulfite reductase () gene and those of other sulfate-reducing bacteria, together with its phenotypic properties, indicated that strain CV2803 was a member of a distinct cluster that contained unnamed species. Therefore, strain CV2803 (=DSM 15576=ATCC BAA-743) is proposed as the type strain of a novel species in a new genus, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02717-0
2004-01-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540077.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02717-0&mimeType=html&fmt=ahah

References

  1. Aeckersberg, F., Bak, F. & Widdel, F. ( 1991; ). Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156, 5–14.[CrossRef]
    [Google Scholar]
  2. Aeckersberg, F., Rainey, F. A. & Widdel, F. ( 1998; ). Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170, 361–369.[CrossRef]
    [Google Scholar]
  3. Annweiler, E., Materna, A., Safinowski, M., Kappler, A., Richnow, H. H., Michaelis, W. & Meckenstock, R. U. ( 2000; ). Anaerobic degradation of 2-methylnaphthalene by sulfate-reducing enrichment culture. Appl Environ Microbiol 66, 5329–5333.[CrossRef]
    [Google Scholar]
  4. Bak, F. & Pfennig, N. ( 1987; ). Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147, 184–189.[CrossRef]
    [Google Scholar]
  5. Beller, H. R., Spormann, A. M., Sharma, P. K., Cole, J. R. & Reinhard, M. ( 1996; ). Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl Environ Microbiol 62, 1188–1196.
    [Google Scholar]
  6. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Oullette, B. F. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  7. Buck, J. D. ( 1982; ). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993.
    [Google Scholar]
  8. Caldwell, M. E., Garrett, R. M., Prince, R. C. & Suflita, J. M. ( 1998; ). Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ Sci Technol 32, 2191–2195.[CrossRef]
    [Google Scholar]
  9. Caumette, P., Baulaique, R. & Matheron, R. ( 1988; ). Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas. Syst Appl Microbiol 10, 284–292.[CrossRef]
    [Google Scholar]
  10. Cline, J. D. ( 1969; ). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14, 454–458.[CrossRef]
    [Google Scholar]
  11. Coates, J. D., Woodward, J., Allen, J., Philp, P. & Lovley, D. R. ( 1997; ). Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63, 3589–3593.
    [Google Scholar]
  12. Davis, J. B. & Yarbrough, H. F. ( 1966; ). Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans. Chem Geol 1, 137–144.[CrossRef]
    [Google Scholar]
  13. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  14. Galushko, A., Minz, D., Schink, B. & Widdel, F. ( 1999; ). Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1, 415–420.[CrossRef]
    [Google Scholar]
  15. Hall, T. A. ( 1999; ). BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  16. Harms, G., Zengler, K., Rabus, R., Aeckersberg, F., Minz, D., Rossello-Mora, R. & Widdel, F. ( 1999; ). Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65, 999–1004.
    [Google Scholar]
  17. Heider, J., Spormann, A. M., Beller, H. R. & Widdel, F. ( 1999; ). Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22, 459–473.
    [Google Scholar]
  18. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  19. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  20. Kolmert, A., Wikström, P. & Hallberg, K. B. ( 2000; ). A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J Microbiol Methods 41, 179–184.[CrossRef]
    [Google Scholar]
  21. Kropp, K. G., Davidova, I. A. & Suflita, J. M. ( 2000; ). Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66, 5393–5398.[CrossRef]
    [Google Scholar]
  22. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  23. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  24. Meckenstock, R. U., Annweiler, E., Michaelis, W., Richnow, H. H. & Schink, B. ( 2000; ). Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66, 2743–2747.[CrossRef]
    [Google Scholar]
  25. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  26. Myhr, S., Lillebø, B.-L. P., Sunde, E., Beeder, J. & Torsvik, T. ( 2002; ). Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58, 400–408.[CrossRef]
    [Google Scholar]
  27. Novelli, G. D. & ZoBell, C. E. ( 1944; ). Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria. J Bacteriol 47, 447–448.
    [Google Scholar]
  28. Overmann, J., Fischer, U. & Pfennig, N. ( 1992; ). A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157, 329–335.[CrossRef]
    [Google Scholar]
  29. Pfennig, N. & Trüper, H. G. ( 1981; ). Isolation of members of the families Chromatiaceae and Chlorobiaceae. In The Prokaryotes, vol. 1, pp. 279–289. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. Berlin: Springer.
  30. Pfennig, N. & Wagener, S. ( 1986; ). An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4, 303–306.[CrossRef]
    [Google Scholar]
  31. Pfennig, N., Widdel, F. & Trüper, H. G. ( 1981; ). The dissimilatory sulfate-reducing bacteria. In The Prokaryotes, vol. 1, pp. 926–940. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. Berlin: Springer.
  32. Postgate, J. R. ( 1984; ). The Sulphate-reducing Bacteria. Cambridge: Cambridge University Press.
  33. Rabus, R., Nordhaus, R., Ludwig, W. & Widdel, F. ( 1993; ). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59, 1444–1451.
    [Google Scholar]
  34. Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F. A., Jannasch, H. W. & Widdel, F. ( 1994; ). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455–458.[CrossRef]
    [Google Scholar]
  35. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  36. So, C. M. & Young, L. Y. ( 1999; ). Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65, 2969–2976.
    [Google Scholar]
  37. So, C. M. & Young, L. Y. ( 2001; ). Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions. Environ Toxicol Chem 20, 473–478.[CrossRef]
    [Google Scholar]
  38. Spormann, A. M. & Widdel, F. ( 2000; ). Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11, 85–105.[CrossRef]
    [Google Scholar]
  39. Vogel, A. I. ( 1961; ). A Textbook of Quantitative Inorganic Analysis. London: Longman.
  40. Wagner, M., Roger, A., Flax, J., Brusseau, G. & Stahl, D. ( 1998; ). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180, 2975–2982.
    [Google Scholar]
  41. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, vol. 4, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  42. Wilkes, H., Boreham, C., Harms, G., Zengler, K. & Rabus, R. ( 2000; ). Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulfate-reducing bacteria. Org Geochem 31, 101–115.[CrossRef]
    [Google Scholar]
  43. Zengler, K., Richnow, H. H., Rossello-Mora, R., Michaelis, W. & Widdel, F. ( 1999; ). Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401, 266–269.[CrossRef]
    [Google Scholar]
  44. Zwolinski, M. D., Harris, R. F. & Hickey, W. J. ( 2000; ). Microbial consortia involved in the anaerobic degradation of hydrocarbons. Biodegradation 11, 141–158.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02717-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02717-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error