1887

Abstract

During a search for xylan-degrading micro-organisms, a sporulated bacterium was recovered from recent and old cow dung and rectal samples. The isolates were identified as members of a novel species of the genus , based on 16S rRNA gene sequences. According to the results of phylogenetic analysis, the most closely related species was . Phenotypic and chemotaxonomic analyses and DNA–DNA hybridization experiments also showed that the isolates belonged to a novel species of the genus . The novel species is a facultatively anaerobic, motile, Gram-variable, sporulated rod. The spores of this rod-shaped micro-organism occur in slightly swollen sporangia and are honeycomb-shaped. The main fatty acid is anteiso-branched C. Growth was observed with many carbohydrates, including xylan, as the only carbon source and gas production was not observed from glucose. The novel species produces a wide variety of hydrolytic enzymes, such as xylanases, cellulases, amylases, gelatinase, urease and -galactosidase. On the contrary, it does not produce caseinase, phenylalanine deaminase or lysine decarboxylase. According to the data obtained in this work, the strains belong to a novel species, for which the name sp. nov. is proposed (type strain, GMP01=LMG 20987=CECT 5760).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02709-0
2004-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540059.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02709-0&mimeType=html&fmt=ahah

References

  1. Aguilera M., Monteoliva-Sánchez M., Suárez A., Guerra V., Lizama C., Bennasar A., Ramos-Cormenzana A. 2001; Paenibacillus jamilae sp. nov., an exopolysaccharide-producing bacterium able to grow in olive-mill wastewater. Int J Syst Evol Microbiol 51:1687–1692 [CrossRef]
    [Google Scholar]
  2. Annison G. 1992; Commercial enzyme supplementation of wheat-based diets raises ileal glycanase activities and improves apparent metabolisable energy, starch and pentosan digestibilities in broiler chickens. Anim Feed Sci Technol 38:105–121 [CrossRef]
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D. 1994; Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB , List no. 51. Int J Syst Bacteriol 44:852 [CrossRef]
    [Google Scholar]
  4. Aÿ J., Götz F., Borriss R., Heinemann U. 1998; Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc Natl Acad Sci U S A 95:6613–6618 [CrossRef]
    [Google Scholar]
  5. Beg Q. K., Bhushan B., Kapoor M., Hoondal G. S. 2000; Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol 24:396–402 [CrossRef]
    [Google Scholar]
  6. Berge O., Guinebretière M.-H., Achouak W., Normand P., Heulin T. 2002; Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616
    [Google Scholar]
  7. Bosshard P. P., Zbinden R., Altwegg M. 2002; Paenibacillus turicensis sp. nov., a novel bacterium harbouring heterogeneities between 16S rRNA genes. Int J Syst Evol Microbiol 52:2241–2249 [CrossRef]
    [Google Scholar]
  8. Busch J. E., Stutzenberger F. J. 1997; Xylanase biosynthesis in Thermomonospora curvata is not repressed by glucose. Bioresour Technol 60:81–85 [CrossRef]
    [Google Scholar]
  9. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  10. Cerdà-Cuéllar M., Rosselló-Mora R. A., Lalucat J., Jofre J, Blanch A. 1997; Vibrio scophthalmi sp. nov., a new species from turbot ( Scophthalmus maximus ). Int J Syst Bacteriol 47:58–61 [CrossRef]
    [Google Scholar]
  11. Chamberlain K., Crawford D. L. 2000; Thatch biodegradation and antifungal activities of two lignocellulolytic Streptomyces strains in laboratory cultures and in golf green turfgrass. Can J Microbiol 46:550–558 [CrossRef]
    [Google Scholar]
  12. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  13. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  14. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Elo S., Suominen I., Kämpfer P., Juhanoja J., Salkinoja-Salonen M., Haahtela K. 2001; Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51:535–545
    [Google Scholar]
  16. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  17. Esteban R., Chordi A., Villa T. G. 1983; Some aspects of a 1,4- β -d-xylanase and β -d-xylosidase secreted by Bacillus coagulans strain 26. FEMS Microbiol Lett 17:163–166
    [Google Scholar]
  18. Hespell R. B. 1996; Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Curr Microbiol 32:291–296 [CrossRef]
    [Google Scholar]
  19. Huss V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  21. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetic analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  22. Lamed R., Bayer E., Saha B. C., Zeikus J. G. 1988; Biotechnological potential of enzyme from unique thermophiles. In Proceedings of the 8th International Biotechnology Symposium pp  371–383 Edited by Durand G., Bobichon L., Florent J. Paris: French Society for Microbiology;
    [Google Scholar]
  23. Lee H. J., Shin D. J., Cho N. C., Kim H. O., Shin S. Y., Im S. Y., Lee H. B., Chun S. B., Bai S. 2000; Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol Lett 22:387–392 [CrossRef]
    [Google Scholar]
  24. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882
    [Google Scholar]
  25. Maat J., Roza M., Verbakel J. 9 other authors 1992; Xylanases and their application in bakery. In Xylans and Xylanases (Progress in Biotechnology no. 7) pp  349–360 Edited by Visser J., Kusters van Someren M. A., Beldman G., Voragen A. G. J. Amsterdam: Elsevier;
    [Google Scholar]
  26. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  27. Meehan C., Bjourson A. J., McMullan G. 2001; Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int J Syst Evol Microbiol 51:1681–1685 [CrossRef]
    [Google Scholar]
  28. Morales P., Madarro A., Flors A., Sendra J. M., Pérez-González J. A. 1995; Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa . Enzyme Microb Technol 17:424–429 [CrossRef]
    [Google Scholar]
  29. Nielsen P., Sorensen J. 1997; Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192 [CrossRef]
    [Google Scholar]
  30. Nishimoto M., Honda Y., Kitaoka M., Hayashi K. 2002; A kinetic study on pH-activity relationship of XynA from alkaliphilic Bacillus halodurans C-125 using aryl-xylobiosides. J Biosci Bioeng 93:428–430 [CrossRef]
    [Google Scholar]
  31. Pearson W., Lipman D. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  32. Puchart V., Katapodis P., Biely P., Kremnicky L., Christakopoulos P., Vrsanska M., Kekos D., Macris B. J., Bhat M. K. 1999; Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus . Enzyme Microb Technol 24:355–361 [CrossRef]
    [Google Scholar]
  33. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 [CrossRef]
    [Google Scholar]
  34. Rivas R., Velázquez E., Valverde A., Mateos P. F., Martínez-Molina E. 2001; A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22:1086–1089 [CrossRef]
    [Google Scholar]
  35. Rivas R., Sánchez M., Trujillo M. E., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Velázquez E. 2003a; Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree ( Ulmus nigra ). Int J Syst Evol Microbiol 53:99–103 [CrossRef]
    [Google Scholar]
  36. Rivas R., Willems A., Subba-Rao N. S., Mateos P. F., Dazzo F. B., Kroppenstedt R. M., Martínez-Molina E., Gillis M., Velázquez E. 2003b; Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans , an aquatic legume from India. Syst Appl Microbiol 26:47–53 [CrossRef]
    [Google Scholar]
  37. Ruiz-Arribas A., Fernández-Abalos J. M., Sánchez P., Garda A. L., Santamaría R. I. 1995; Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Appl Environ Microbiol 61:2414–2419
    [Google Scholar]
  38. Sá-Pereira P., Mesquita A., Duarte J. C., Barros M. R. A., Costa-Ferreira M. 2002; Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties. Enzyme Microb Technol 30:924–933 [CrossRef]
    [Google Scholar]
  39. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  40. Tabernero C., Sánchez-Torres J., Pérez P., Santamaría R. I. 1995; Cloning and DNA sequencing of xyaA , a gene encoding an endo- β -1,4-xylanase from an alkalophilic Bacillus strain (N137). Appl Environ Microbiol 61:2420–2424
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  42. Tseng M. J., Yap M. N., Ratanakhanokchai K., Kyu K. L., Chen S. T. 2002; Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus . Enzyme Microb Technol 30:590–595 [CrossRef]
    [Google Scholar]
  43. Viikari L., Kantelinen A., Sundquist J., Linko M. 1994; Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350
    [Google Scholar]
  44. von der Weid I., Frois Duarte G., van Elsas J. D., Seldin L. 2002; Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153 [CrossRef]
    [Google Scholar]
  45. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  46. Yoon J.-H., Oh H.-M., Yoon B.-D., Kang K. H., Park Y.-H. 2003; Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 53:295–301 [CrossRef]
    [Google Scholar]
  47. Zamost B. L., Nielsen H. K., Starnes R. L. 1991; Thermostable enzymes for industrial applications. J Ind Microbiol 8:71–82 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02709-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02709-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error