sp. nov., a novel species that actively solubilizes phosphate Free

Abstract

A bacterial strain (designated IH5), isolated from rhizospheric soil of grasses growing spontaneously in Spanish soil, actively solubilized phosphates when bicalcium phosphate was used as a phosphorus source. This strain was Gram-negative, strictly aerobic, rod-shaped and motile. The strain produced catalase, but not oxidase. Cellulose, casein, starch, gelatin, aesculin and urea were not hydrolysed. Growth was observed with many carbohydrates as the carbon source. The main non-polar fatty acids detected were hexadecenoic acid (C), hexadecanoic acid (C) and octadecenoic acid (C). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (C 3-OH), 3-hydroxydodecanoic acid (C 3-OH) and 2-hydroxydodecanoic acid (C 2-OH). Phylogenetic analysis of 16S rRNA indicated that this bacterium belongs to the genus in the -subclass of the and that the closest related species is . The DNA G+C content was 61 mol%. DNA–DNA hybridization showed 23 % relatedness between strain IH5 and DSM 11363. Therefore, strain IH5 belongs to a novel species from the genus , for which the name sp. nov. is proposed (type strain, IH5=LMG 21640=CECT 5726).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02703-0
2003-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs532067.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02703-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Baïda N., Yazourh A., Singer E., Izard D. 2002; Pseudomonas grimontii sp. nov. Int J Syst Evol Microbiol 52:1497–1503 [CrossRef]
    [Google Scholar]
  3. Behrendt U., Ulrich A., Schumann P., Erler W., Burghardt J., Seyfarth W. 1999; A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 49:297–308 [CrossRef]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  5. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA sequences. Int J Syst Bacteriol 45:240–245 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Delorme S., Lemanceau P., Christen R., Corberand T., Meyer J.-M., Gardan L. 2002; Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int J Syst Evol Microbiol 52:513–523
    [Google Scholar]
  8. Deubel A., Gransee A., Merbach W. 2000; Transformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392 [CrossRef]
    [Google Scholar]
  9. Di Simine C. D., Sayer J. A., Gadd G. M. 1998; Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94 [CrossRef]
    [Google Scholar]
  10. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp 21–33Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1983; Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333 [CrossRef]
    [Google Scholar]
  13. Gardan L., Shafik H., Belouin S., Broch R., Grimont F., Grimont P. A. D. 1999; DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. ( ex Sutic and Dowson 1959). Int J Syst Evol Microbiol 49:469–478
    [Google Scholar]
  14. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. editors 1994 Bergey's Manual of Determinative Bacteriology , 9th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  16. Huss V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD system 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  20. Kumar V., Singh K. P. 2001; Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresour Technol 76:173–175 [CrossRef]
    [Google Scholar]
  21. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetic analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  22. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  23. Manna M. C., Ghosh P. K., Ghosh B. N., Singh K. N. 2001; Comparative effectiveness of phosphate-enriched compost and single superphosphate on yield, uptake of nutrients and soil quality under soybean-wheat rotation. J Agri Sci 137:45–54
    [Google Scholar]
  24. Musarrat J., Bano N., Rao R. A. K. 2000; Isolation and characterization of 2,4-dichlorophenoxyacetic acid-catabolizing bacteria and their biodegradation efficiency in soil. World J Microbiol Biotechnol 16:495–497 [CrossRef]
    [Google Scholar]
  25. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40 [CrossRef]
    [Google Scholar]
  26. Palleroni N. J. 1992; Present situation of the taxonomy of aerobic pseudomonads. In Pseudomonas: Molecular Biology and Biotechnology pp 105–115Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas . Int J Syst Bacteriol 23:333–339 [CrossRef]
    [Google Scholar]
  28. Pandey A., Palni L. M. S. 1998; Isolation of Pseudomonas corrugata from Sikkim Himalaya. World J Microbiol Biotechnol 14:411–413 [CrossRef]
    [Google Scholar]
  29. Pearson W., Lipman D. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  30. Peix A., Rivas-Boyero A. A., Mateos P. F., Rodríguez-Barrueco C., Martínez-Molina E., Velázquez E. 2001; Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110 [CrossRef]
    [Google Scholar]
  31. Rivas R., Velázquez E., Valverde A., Mateos P. F., Martínez-Molina E. 2001; A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22:1086–1089 [CrossRef]
    [Google Scholar]
  32. Rivas R., Sánchez M., Trujillo M. E., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Velázquez E. 2003a; Xylanimonas cellulosilytica gen. nov., sp. nov. a xylanolytic bacterium isolated from a decayed tree ( Ulmus nigra ). Int J Syst Evol Microbiol 53:99–103 [CrossRef]
    [Google Scholar]
  33. Rivas R., Willems A., Subba-Rao N. S., Mateos P. F., Dazzo F. B., Kroppenstedt R. M., Martínez-Molina E., Gillis M., Velázquez E. 2003b; Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans , an aquatic legume from India. Syst Appl Microbiol 26:47–53 [CrossRef]
    [Google Scholar]
  34. Rodríguez H., Fraga R. 1999; Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339 [CrossRef]
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  36. Sikorski J., Stackebrandt E., Wackernagel W. 2001; Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 51:1549–1555
    [Google Scholar]
  37. Singh S., Kapoor K. K. 1994; Solubilization of insoluble phosphates by bacteria isolated from different sources. Environ Ecol 12:51–55
    [Google Scholar]
  38. Tajima F., Nei M. 1984; Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285
    [Google Scholar]
  39. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
  40. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  41. Uchino M., Shida O., Uchimura T., Komagata K. 2001; Pseudomonas parafulva sp. nov. and Pseudomonas cremoricolorata sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM List no 85. Int J Syst Evol Microbiol 52:685–690
    [Google Scholar]
  42. Vázquez P., Holguin G., Puente M. E., López-Cortez A., Bashan Y. 2000; Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468 [CrossRef]
    [Google Scholar]
  43. Verhille S., Baida N., Dabboussi F., Izard D., Leclerc H. 1999; Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov. Syst Appl Microbiol 22:45–58 [CrossRef]
    [Google Scholar]
  44. Villegas J., Fortín J. A. 2002; Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing as nitrogen source. Can J Bot 80:571–576 [CrossRef]
    [Google Scholar]
  45. Viveganandan G., Jauhri K. S. 2000; Growth and survival of phosphate-solubilizing bacteria in calcium alginate. Microbiol Res 155:205–207 [CrossRef]
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  47. Yang Z. 1997; paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02703-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02703-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 2067 – 2072

Electron micrograph of strain IH5 .

Wider phylogenetic tree showing the placement of within the genus .

[Single PDF](242 KB)



PDF

Most cited Most Cited RSS feed