1887

Abstract

A novel anaerobic, thermophilic, xylanolytic, motile rod-shaped bacterium with a sheath-like outer structure (toga) was isolated from a Mexican oil well in the Gulf of Mexico. Strain MET12 was a Gram-negative bacterium, reducing elemental sulfur, thiosulfate and sulfite to hydrogen sulfide. Its optimum growth conditions were 55 °C, pH 6·6, 3 % NaCl and 0·15 % MgCl.6HO. The DNA G+C content was 36·1 mol%. Phylogenetically, strain MET12 was related to members of genus , with similarities to , , and varying from 97·6 to 98·8 %. However DNA–DNA relatedness values between these species and strain MET12 were lower than 70 %. As strain MET12 (=DSM 14811=CIP 107371) was genomically and phenotypically different from existing species, it is proposed as the type strain of a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02702-0
2004-01-01
2021-03-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540169.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02702-0&mimeType=html&fmt=ahah

References

  1. Alain K., Marteinsson V. T., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Prieur D., Birrien J.-L. 2002; Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum R. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  4. Benson D. A., Boguski M. S., Lipman D. J., Oullette B. F. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  5. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  6. Davey M. E., Wood W. A., Key R., Nakamura K., Stahl D. A. 1993; Isolation of three species of Geotoga and Petrotoga : two new genera, representing a new lineage in the bacterial line of descent distantly related to the “ Thermotogales ”. Syst Appl Microbiol 16:191–200 [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions; acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  9. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 113:327–332 [CrossRef]
    [Google Scholar]
  10. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997a; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [CrossRef]
    [Google Scholar]
  11. Fardeau M.-L., Patel B. K. C., Magot M., Ollivier B. 1997b; Utilization of serine, leucine, isoleucine, and valine by Thermoanaerobacter brockii in the presence of thiosulfate or Methanobacterium sp. as electron acceptors. Anaerobe 3:405–410 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  13. Grassia G. S., McLean K. M., Glénat P., Bauld J., Sheehy A. J. 1996; A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58 [CrossRef]
    [Google Scholar]
  14. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  15. Hungate R. E. 1969; A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  18. Jeanthon C., Reysenbach A. L., L'Haridon S., Gambacorta A., Pace N. R., Glénat P., Prieur D. 1995; Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97 [CrossRef]
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  211–232 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  20. Koussémon M., Combet-Blanc Y., Patel B. K. C., Cayol J.-L., Thomas P., Garcia J.-L., Ollivier B. 2001; Propionibacterium microaerophilum sp. nov., a microaerophilic bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 51:1373–1382
    [Google Scholar]
  21. L'Haridon S., Miroshnichenko M. L., Hippe H., Fardeau M.-L., Bonch-Osmolovskaya E., Stackebrandt E., Jeanthon C. 2001; Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334
    [Google Scholar]
  22. L'Haridon S., Miroshnichenko M. L., Hippe H., Fardeau M.-L., Bonch-Osmolovskaya E. A., Stackebrandt E., Jeanthon C. 2002; Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722 [CrossRef]
    [Google Scholar]
  23. Lien T., Madsen M., Rainey F. A., Birkeland N.-K. 1998; Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013 [CrossRef]
    [Google Scholar]
  24. Magot M., Ollivier B., Patel B. K. C. 2000; Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116 [CrossRef]
    [Google Scholar]
  25. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  27. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 [CrossRef]
    [Google Scholar]
  28. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Prensier G., Egan A., García J.-L., Ollivier B. 1995a; Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314 [CrossRef]
    [Google Scholar]
  29. Ravot G., Ollivier B., Magot M., Patel B. K. C., Crolet J.-L., Fardeau M.-L., Garcia J.-L. 1995b; Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales . Appl Environ Microbiol 61:2053–2055
    [Google Scholar]
  30. Ravot G., Ollivier B., Fardeau M.-L., Patel B. K. C., Andrews K. T., Magot M., Garcia J.-L. 1996; l-Alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea : a remnant of an ancestral metabolism?. Appl Environ Microbiol 62:2657–2659
    [Google Scholar]
  31. Reysenbach A.-L. 2001; Order I. Thermotogales ord. nov. Huber and Stetter 1992c, 3809. In Bergey's Manual of Systematic Bacteriology . , 2nd edn. vol 1p– 369 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  33. Stetter K. O., Huber R., Blöchl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Wery N., Lesongeur F., Pignet P., Derennes V., Cambon-Bonavita M.-A., Godfroy A., Barbier G. 2001; Marinitoga camini gen. nov., sp. nov. a rod-shaped bacterium belonging to the order Thermotogales , isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504
    [Google Scholar]
  36. Winker S., Woese C. R. 1991; A definition of the domains Archaea , Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02702-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02702-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error