1887

Abstract

Five strains of halophilic, Gram-negative marine bacteria (KMM 3809, KMM 3814, KMM 3815, KMM 3817 and KMM 3818) were isolated from sediments collected from Chazhma Bay, Sea of Japan. Phylogenetic 16S rRNA gene sequence-based analysis placed these bacteria in a clade within the genus in the -. KMM 3809 showed highest 16S rRNA gene sequence similarity of 97·3 % to and 96·9 % to and . DNA–DNA hybridization between the five isolates was at the conspecific level (94–96 %) and that among the closest phylogenetic neighbours ranged from 45·0 to 62·5 %. The new organisms were susceptible to polymyxin. Predominant fatty acids were C, C 9, C 7 and C 9. Phylogenetic evidence, along with phenotypic and genotypic characteristics, showed that the bacteria constituted a novel species of the genus . The name sp. nov. is proposed for this species, with the type strain KMM 3809 (=CIP 107686).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02693-0
2003-11-01
2021-03-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs532073.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02693-0&mimeType=html&fmt=ahah

References

  1. Abdeddaïm, S. 1997; Fast and sound two-step algorithms for multiple alignment of nucleic sequences. Int J Artif Intell Tools 6:179–192 [CrossRef]
    [Google Scholar]
  2. Barry A. L. 1980; Procedures and theoretical considerations for testing antimicrobial agents in agar media. In Antibiotics in Laboratory Medicine pp 10–16Edited by Lorian V. Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429
    [Google Scholar]
  4. Christensen H., Angen Ø., Mutters R., Olsen J. E., Bisgaard M. 2000; DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102 [CrossRef]
    [Google Scholar]
  5. Galtier N., Gouy M., Gautier C. 1996; SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput Applic Biosci 12:543–548
    [Google Scholar]
  6. Gascuel O. 1997; bionj: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695 [CrossRef]
    [Google Scholar]
  7. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov. sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [CrossRef]
    [Google Scholar]
  8. Hedlund B. P., Geiselbrecht A. D., Staley J. T. 2001; Marinobacter strain NCE312 has a Pseudomonas -like naphthalene dioxygenase. FEMS Microbiol Lett 201:47–51 [CrossRef]
    [Google Scholar]
  9. Huys G., Vancanneyt M., Coopman R., Janssen P., Falsen E., Altwegg M., Kersters K. 1994; Cellular fatty acid composition as a chemotaxonomic marker for the differentiation of phenospecies and hybridization groups in the genus Aeromonas . Int J Syst Bacteriol 44:651–658 [CrossRef]
    [Google Scholar]
  10. Ivanova E. P., Kiprianova E. A., Mikhailov V. V., Levanova G. F., Garagulya A. D., Gorshkova N. M., Yumoto N., Yoshikawa S. 1996; Characterization and identification of marine Alteromonas nigrifaciens strains and emendation of the description. Int J Syst Bacteriol 46:223–228 [CrossRef]
    [Google Scholar]
  11. Ivanova E. P., Kiprianova E. A., Mikhailov V. V. 8 other authors 1998; Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int J Syst Bacteriol 48:247–256 [CrossRef]
    [Google Scholar]
  12. Ivanova E. P., Zhukova N. V., Svetashev V. I., Gorshkova N. M., Kurilenko V. V., Frolova G. M., Mikhailov V. V. 2000; Evaluation of phospholipid and fatty acid compositions as chemotaxonomic markers of Alteromonas -like proteobacteria. Curr Microbiol 41:341–345 [CrossRef]
    [Google Scholar]
  13. Ivanova E. P., Gorshkova N. M., Mikhailov V. V. 7 other authors 2002 The Microbiological Aspect of Radioecological Situation in the Chazhma Bay (Japan Sea/East Sea). 1 Number and Taxonomic Diversity of Sea Saprophitic Bacteria in the Water and Bottom Sediments of the Bay Vladivostok: Pasific Oceanological Institute FEBRAS;
    [Google Scholar]
  14. Ivanova E. P., Sawabe T., Zhukova N. V. 8 other authors 2003; Occurrence and diversity of mesophilic Shewanella strains isolated from the North-West Pacific Ocean. Syst Appl Microbiol 26:293–301 [CrossRef]
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  17. Melcher R. J., Apitz S. E., Hemmingsen B. B. 2002; Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Appl Environ Microbiol 68:2858–2868 [CrossRef]
    [Google Scholar]
  18. Moule A. L., Wilkinson S. G. 1987; Polar lipids, fatty acids and isoprenoid quinones of Alteromonas putrefaciens ( Shewanella putrefaciens . Syst Appl Microbiol 9:192–198 [CrossRef]
    [Google Scholar]
  19. Nguyen B. H., Denner E. B. M., Dang T. C. H., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  20. Perrière G., Gouy M. 1996; WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [CrossRef]
    [Google Scholar]
  21. Rontani J.-F., Bonin P. C., Volkman J. K. 1999; Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds. Appl Environ Microbiol 65:221–230
    [Google Scholar]
  22. Sasaki T., Uchida N. A., Uchida H., Takasuka N., Kamiya H., Endo Y., Tanaka M., Hayashi T., Shimizu Y. 1985; Antitumor activity of aqueous extracts of marine animals. J Pharmacobio-Dyn 8:969–974 [CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–655Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Spröer C., Lang E., Hobeck P., Burghardt J., Stackebrandt E., Tindall B. J. 1998; Transfer of Pseudomonas nautica to Marinobacter hydrocarbonoclasticus . Int J Syst Bacteriol 48:1445–1448 [CrossRef]
    [Google Scholar]
  25. Svetashev V. I., Vysotskii M. V., Ivanova E. P., Mikhailov V. V. 1995; Cellular fatty acid of Alteromonas species. Syst Appl Microbiol 18:37–43 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Yoon J.-H., Shin D.-Y., Kim I.-G., Kang K. H., Park Y.-H. 2003; Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. Int J Syst Evol Microbiol 53:563–568 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02693-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02693-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 2073 – 2078

Cellular fatty acid composition of species.

Atomic force microscopy images of cells of .

[Single PDF](167 KB)



PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error