1887

Abstract

Cells of strain LX3, isolated from soil, were Gram-negative, facultatively anaerobic, non-motile, capsulated and non-endospore-forming straight rods, able to grow at 10 °C, unable to produce gas from lactose at 45 °C and unable to produce indole. The isolate converted sucrose to isomaltulose and did not produce detectable glucose by-products. The G+C content of the DNA was 56·4 mol%. Furthermore, comparison of 16S rRNA and gene sequences showed that the isolate clearly belongs to the genus . The closest phylogenetic relative was , there being 99·3 and 97·5 % similarity in 16S rRNA and gene sequences, respectively. DNA–DNA hybridization analysis demonstrated a very low level of relatedness to other members of the genus , indicating that the isolated strain and other species in the genus were not related at the species level. The isolate could be differentiated from other previously described members of the genus on the basis of phenotypic differences and 16S rRNA and gene sequence divergence, together with DNA–DNA reassociation data. Therefore, it is proposed that strain LX3 (=DSM 16265=JCM 12419) should be classified as the type strain of a novel species of genus , sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02690-0
2004-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542131.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02690-0&mimeType=html&fmt=ahah

References

  1. Bagley S. T., Seidler R. J., Brenner D. J. 1981; Klebsiella planticola sp. nov.: a new species of Enterobacteriaceae found primarily in nonclinical environments. Curr Microbiol 6:105–109 [CrossRef]
    [Google Scholar]
  2. Carter J. S., Bowden F. J., Bastian I., Myers G. M., Sriprakash K. S., Kemp D. J. 1999; Phylogenetic evidence for reclassification of Calymmatobacterium granulomatis as Klebsiella granulomatis comb. nov. Int J Syst Bacteriol 49:1695–1700 [CrossRef]
    [Google Scholar]
  3. Cheetham P. S. J., Imber C. E., Isherwood J. 1982; The formation of isomaltulose by immobilized Erwinia rhapontici . Nature 299:628–631 [CrossRef]
    [Google Scholar]
  4. Cole J. R., Chai B., Marsh T. L. 8 other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  5. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerhard P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Drancourt M., Bollet C., Carta A., Rousselier P. 2001; Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51:925–932 [CrossRef]
    [Google Scholar]
  7. Etchebehere C., Pavan M. E., Zorzópulos J., Soubes M., Muxí L. 1998; Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge. Int J Syst Bacteriol 48:1297–1304 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1995 phylip–phylogeny inference package (version 3.57c Seattle: University of Washington;
    [Google Scholar]
  9. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturing temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  10. McAllister M., Kelly C. T., Doyle E., Fogarty W. M. 1990; The isomaltulose synthesizing enzyme of Serratia plymuthica . Biotechnol Lett 12:667–672 [CrossRef]
    [Google Scholar]
  11. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Anal Chem 31:426–428 [CrossRef]
    [Google Scholar]
  12. Miyata Y., Sugitani T., Tsuyuki K., Ebashi T., Nakajima Y. 1992; Isolation and characterization of Pseudomonas mesoacidophila producing trehalulose. Biosci Biotechnol Biochem 56:1680–1681 [CrossRef]
    [Google Scholar]
  13. Mollet C., Drancourt M., Raoult D. 1997; rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011 [CrossRef]
    [Google Scholar]
  14. Ørskov I. 1984; Genus V. Klebsiella Trevisan 1885, 105AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  461–465 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Richens J. 1991; The diagnosis and treatment of donovanosis (granuloma inguinale). Genitourin Med 67:441–452
    [Google Scholar]
  16. Sakazaki R., Tamura K., Kosako Y., Yoshizaki E. 1989; Klebsiella ornithinolytica sp. nov., formerly known as ornithine-positive Klebsiella oxytoca . Curr Microbiol 18:201–206 [CrossRef]
    [Google Scholar]
  17. Schwimmer S., Bevenue A. 1956; Reagent for differentiation of 1,4- and 1,6-linked glucosaccharides. Science 123:543–544 [CrossRef]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Microbiology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Stodola F. H., Sharpe E. S., Koepsell H. J. 1956; The preparation, properties and structure of the disaccharide leucrose. J Am Chem Soc 78:2514–2518 [CrossRef]
    [Google Scholar]
  20. Takazoe I., Ohta K., Kadomura Y., Nakajima Y. 1982; Inhibitory mechanism of isomaltulose for insoluble glucan synthesis by Streptococus mutans . J Dent Res 61:340
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  22. Topitsoglou V., Sasaki N., Takazoe I., Frostell G. 1984; Effect of frequent rinses with isomaltulose (palatinose) solution on acid production in human dental plaque. Caries Res 18:47–51 [CrossRef]
    [Google Scholar]
  23. Tsuyuki K., Sugitani T., Miyata Y., Ebashi T., Nakajima Y. 1992; Isolation and characterization of isomaltulose- and trehalulose-producing bacteria from Thailand soil. J Gen Appl Microbiol 38:483–490 [CrossRef]
    [Google Scholar]
  24. Weidenhageen R., Lorenz S. 1957; Transformation of sucrose to palatinose (6-[ α -glucopyranosyl]-fructofuranose) by a new bacterium. Z Zuckerind 7:533–534 (in German
    [Google Scholar]
  25. Wilson K. 1990; Preparation of genomic DNA from bacteria: miniprep of bacterial genomic DNA. In Current Protocols in Molecular Biology vol 1 pp. 2.4.1–2.4.2 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  26. Yoon J.-H., Kang S.-S., Mheen T.-I. 7 other authors 2001; Lactobacillus kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 50:1789–1795
    [Google Scholar]
  27. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02690-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02690-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error