1887

Abstract

Two extremely halophilic archaeal strains, TBN21 and TBN49, were isolated from the Taibei marine solar saltern near Lianyungang city, Jiangsu province, China. Cells of the two strains were pleomorphic and Gram-negative and colonies were red. Strains TBN21 and TBN49 were able to grow at 25–50 °C (optimum 37 °C), at 1.4–5.1 M NaCl (optimum 3.4–3.9 M) and at pH 5.5–9.5 (optimum pH 7.0–7.5) and neither strain required Mg for growth. Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). The major polar lipids of the two strains were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and eight glycolipids; three of these glycolipids (GL3, GL4 and GL5) were chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1), galactosyl mannosyl glucosyl diether (TGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Phylogenetic analysis revealed that strains TBN21 and TBN49 formed a distinct clade with their closest relative, JCM 9908 (89.0–89.5 % 16S rRNA gene sequence similarity). The DNA G+C contents of strains TBN21 and TBN49 were 64.8 and 62.7 mol%, respectively. DNA–DNA hybridization between strains TBN21 and TBN49 was 90.1 %. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains TBN21 and TBN49 represent a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is TBN21 ( = CGMCC 1.10329  = JCM 16809).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 30970006)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026799-0
2011-07-01
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1617.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026799-0&mimeType=html&fmt=ahah

References

  1. Bardavid R. E., Mana L., Oren A. 2007; Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea–Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 57:780–783 [View Article][PubMed]
    [Google Scholar]
  2. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Li Z., Jensen G., Rodríguez-Valera F., Bolhuis H., Dyall-Smith M. L. 2007; Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392 [View Article][PubMed]
    [Google Scholar]
  3. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Echigo A., Dyall-Smith M. L. 2010; Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer. Int J Syst Evol Microbiol 60:1196–1199 [View Article][PubMed]
    [Google Scholar]
  4. Castillo A. M., Gutiérrez M. C., Kamekura M., Ma Y.-H., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2006a; Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 56:765–770 [View Article][PubMed]
    [Google Scholar]
  5. Castillo A. M., Gutiérrez M. C., Kamekura M., Xue Y.-F., Ma Y.-H., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2006b; Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56:1519–1524 [View Article][PubMed]
    [Google Scholar]
  6. Cui H.-L., Lin Z.-Y., Dong Y., Zhou P.-J., Liu S.-J. 2007; Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206 [View Article][PubMed]
    [Google Scholar]
  7. Cui H.-L., Zhou P.-J., Oren A., Liu S.-J. 2009; Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . Extremophiles 13:31–37 [View Article][PubMed]
    [Google Scholar]
  8. Cui H.-L., Gao X., Sun F.-F., Dong Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Oren A., Zhou P.-J. 2010a; Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:1366–1371 [View Article][PubMed]
    [Google Scholar]
  9. Cui H.-L., Gao X., Li X.-Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Zhou P.-J. 2010b; Haloplanus vescus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haloplanus . Int J Syst Evol Microbiol 60:1824–1827 [View Article][PubMed]
    [Google Scholar]
  10. Cui H.-L., Li X.-Y., Gao X., Xu X.-W., Zhou Y.-G., Liu H.-C., Oren A., Zhou P.-J. 2010c; Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2089–2093 [View Article][PubMed]
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  12. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  13. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  14. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  15. Gonzalez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [View Article][PubMed]
    [Google Scholar]
  16. Gutiérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517[PubMed]
    [Google Scholar]
  17. Gutiérrez M. C., Castillo A. M., Kamekura M., Xue Y.-F., Ma Y.-H., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2007; Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. Int J Syst Evol Microbiol 57:1402–1407 [View Article][PubMed]
    [Google Scholar]
  18. Gutiérrez M. C., Castillo A. M., Kamekura M., Ventosa A. 2008; Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58:2880–2884 [View Article][PubMed]
    [Google Scholar]
  19. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  20. Inoue K., Itoh T., Ohkuma M., Kogure K. 2011; Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 61:942–946 [View Article][PubMed]
    [Google Scholar]
  21. Kates M. 1986 Techniques of Lipidology, 2nd rev. edn. pp. 106–107, 241–246 Amsterdam: Elsevier;
    [Google Scholar]
  22. Kumar S., Nei M., Dudley J., Tamura K. 2008; mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [View Article][PubMed]
    [Google Scholar]
  23. Mancinelli R. L., Landheim R., Sánchez-Porro C., Dornmayr-Pfaffenhuemer M., Gruber C., Legat A., Ventosa A., Radax C., Ihara K. et al. 2009; Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. Int J Syst Evol Microbiol 59:1908–1913 [View Article][PubMed]
    [Google Scholar]
  24. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  25. McDade J. J., Weaver R. H. 1959; Rapid methods for the detection of gelatin hydrolysis. J Bacteriol 77:60–64[PubMed]
    [Google Scholar]
  26. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R. 2010; Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 60:2513–2516 [View Article][PubMed]
    [Google Scholar]
  27. Ng W.-L., Yang C.-F., Halladay J. T., Arora A., DasSarma S. 1995; Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium . In Archaea: a Laboratory Manual vol. 1 pp. 179–180 Edited by DasSarma S., Fleischmann E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Oren A., Gurevich P., Gemmell R. T., Teske A. 1995; Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754 [View Article][PubMed]
    [Google Scholar]
  29. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  30. Oren A., Arahal D. R., Ventosa A. 2009; Emended descriptions of genera of the family Halobacteriaceae . Int J Syst Evol Microbiol 59:637–642 [View Article][PubMed]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  32. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S. 2007; Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24 [View Article][PubMed]
    [Google Scholar]
  33. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S. 2008; Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860 [View Article][PubMed]
    [Google Scholar]
  34. Shimane Y., Hatada Y., Minegishi H., Mizuki T., Echigo A., Miyazaki M., Ohta Y., Usami R., Grant W. D., Horikoshi K. 2010; Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. Int J Syst Evol Microbiol 60:2529–2534 [View Article]
    [Google Scholar]
  35. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.026799-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026799-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error