1887

Abstract

A novel hydrocarbon-degrading, Gram-negative, obligately aerobic, non-motile, non-sporulating, rod-shaped bacterium, designated strain TBF2/20.2, was isolated from a biofilter clean-up facility set up on a hydrocarbon-contaminated site in Hungary. It was characterized by using a polyphasic approach to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate is affiliated with the genus in the family . It was found to be related most closely to Gsoil 060 (93.3 % 16S rRNA gene sequence similarity). Strain TBF2/20.2 grew at pH 6–9 (optimally at pH 6.5–7.0) and at 15–42 °C (optimally at 30–37 °C). The major fatty acids were iso-C (39.4 %), summed feature 3 (iso-C 2-OH and/or Cω7; 26.0 %), iso-C 3-OH (14.5 %) and C (4.5 %). The major menaquinone was MK-7 and the predominant polar lipid was phosphatidylethanolamine. The DNA G+C content of strain TBF2/20.2 was 41.2 mol%. Physiological and chemotaxonomic data further confirmed the distinctiveness of strain TBF2/20.2 from recognized members of the genus . Thus, strain TBF2/20.2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TBF2/20.2 ( = NCAIM B 02393  = CCM 7765).

Funding
This study was supported by the:
  • Agruniver Holding Ltd (Award KM_FOKT_06_ KMKINNOV)
  • National Development Agency, Hungary (Award KMOP 1.1.1-07/1)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026641-0
2011-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/12/2861.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026641-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Euzéby J. P. 1997; List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 [View Article][PubMed]
    [Google Scholar]
  6. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  7. Kanaly R. A., Harayama S., Watanabe K. 2002; Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl Environ Microbiol 68:5826–5833 [View Article][PubMed]
    [Google Scholar]
  8. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  9. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  10. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  12. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  13. Ntougias S., Fasseas C., Zervakis G. I. 2007; Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. Int J Syst Evol Microbiol 57:398–404 [View Article][PubMed]
    [Google Scholar]
  14. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  16. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  17. Swofford D. L. 1993; Phylogenetic analysis using parsimony (paup), version 3.1.1.. Sunderland, MA: Sinauer Associates.;
  18. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  22. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  23. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp. 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  25. Wang L., Ten L. N., Lee H. G., Im W. T., Lee S. T. 2008; Olivibacter soli sp. nov., Olivibacter ginsengisoli sp. nov. and Olivibacter terrae sp. nov., from soil of a ginseng field and compost in South Korea. Int J Syst Evol Microbiol 58:1123–1127 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026641-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026641-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error