1887

Abstract

A novel acidothermophilic archaeon, strain Ar-4, was isolated from a sulfuric hot spring in Tengchong, Yunnan, China. Cells of strain Ar-4 were Gram-staining-negative, irregular cocci and motile by means of flagella. Strain Ar-4 grew over a temperature range of 55–75 °C (optimum, 65 °C), a pH range of 2.5–5.5 (optimum, pH 3.5) and a NaCl concentration range of 0–1 % (w/v). The novel strain was aerobic and facultatively chemolithoautotrophic. The strain could extract metal ions from sulfidic ore. It was also able to oxidize reduced sulfur compounds. In addition, it was able to use heterogeneous organic materials for organotrophic growth. The main cellular lipids were calditoglycerocaldarchaeol (CGTE) and caldarchaeol (DGTE). The DNA G+C content of the strain was 40.2 mol%. Analysis of 16S rRNA gene sequences showed that strain Ar-4 was phylogenetically related to members of the genus and had sequence similarities of 97.7 %, 97.0 % and 96.8 % with DSM 7519, DSM 5348 and DSM 10039, respectively. Strain Ar-4 showed DNA–DNA relatedness values of 47.5 %, 30.8 % and 29.1 % with DSM 7519, DSM 5348 and DSM 10039, respectively. The differences in cell motility, the temperature and pH ranges for growth, the ability to utilize carbon sources, the DNA G+C content, and the low DNA–DNA relatedness values distinguished strain Ar-4 from recognized species of the genus . On the basis of these results, it was concluded that strain Ar-4 represents a novel species of the genus , for which the name is proposed. The type strain is Ar-4 ( = JCM 15769 = CGMCC 1.7082).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026591-0
2011-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2395.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026591-0&mimeType=html&fmt=ahah

References

  1. Allen M. B. . ( 1959; ). Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. . Arch Mikrobiol 32:, 270–277. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bixian J. . ( 2006; ). The mensuration of the copper contents in the stannum based alloy with BCO Light intensity method. . Heavy Cast Forg 1: , 37–38.
    [Google Scholar]
  3. Brierley C. L. , Brierley J. A. . ( 1973; ). A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. . Can J Microbiol 19:, 183–188. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brock T. D. , Brock K. M. , Belly R. T. , Weiss R. L. . ( 1972; ). Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. . Arch Mikrobiol 84:, 54–68. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen Z. W. , Liu Y. Y. , Wu J. F. , She Q. X. , Jiang C. Y. , Liu S. J. . ( 2007; ). Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates. . Appl Microbiol Biotechnol 74:, 688–698. [CrossRef] [PubMed]
    [Google Scholar]
  6. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  7. de Rosa M. , Gambacorta A. , Bu’lock J. D. . ( 1975; ). Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius . . J Gen Microbiol 86:, 156–164.[PubMed] [CrossRef]
    [Google Scholar]
  8. Dong X. Z. , Cai M. Y. . ( 2001; ). Determinative Manual for Routine Bacteriology (English translation). Beijing:: Academic Press;.
    [Google Scholar]
  9. Fuchs T. , Huber H. , Teiner K. , Burggraf K. , Stetter K. O. . ( 1995; ). Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. . Syst Appl Microbiol 18:, 560–566.[CrossRef]
    [Google Scholar]
  10. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. He Z. G. , Zhong H. F. , Li Y. Q. . ( 2004; ). Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. . Curr Microbiol 48:, 159–163. [CrossRef] [PubMed]
    [Google Scholar]
  12. Huber H. , Prangishvili D. . ( 2006; ). Sulfolobales . . In The Prokaryotes, vol. 3, pp. 23–51. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . . Singapore:: Springer;. [CrossRef]
    [Google Scholar]
  13. Huber G. , Spinnler C. , Gambacorta A. , Stetter K. O. . ( 1989; ). Metallosphaera sedula gen. nov. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. . Syst Appl Microbiol 12:, 38–47.[CrossRef]
    [Google Scholar]
  14. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192.[CrossRef]
    [Google Scholar]
  15. Itoh Y. H. , Kurosawa N. , Uda I. , Sugai A. , Tanoue S. , Itoh T. , Horiuchi T. , Itoh T. . ( 2001; ). Metallosphaera sedula TA-2, a calditoglycerocaldarchaeol deletion strain of a thermoacidophilic archaeon. . Extremophiles 5:, 241–245. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kumar S. , Tamura K. , Nei M. . ( 2004; ). mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kurosawa N. , Itoh Y. H. , Itoh T. . ( 2003; ). Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov. based on phylogenetic evidence and DNA G+C content. . Int J Syst Evol Microbiol 53:, 1607–1608. [CrossRef] [PubMed]
    [Google Scholar]
  19. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  20. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  21. Nishihara M. , Morii H. , Koga Y. . ( 1987; ). Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum . . J Biochem 101:, 1007–1015.[PubMed]
    [Google Scholar]
  22. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Segerer A. , Neuner A. , Kristjansson J. K. , Stetter K. O. . ( 1986; ). Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. . Int J Syst Bacteriol 36:, 559–564. [CrossRef]
    [Google Scholar]
  24. Sugai A. , Sakuma R. , Fukuda I. , Kurosawa N. , Itoh Y. H. , Kon K. , Ando S. , Itoh T. . ( 1995; ). The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius . . Lipids 30:, 339–344. [CrossRef] [PubMed]
    [Google Scholar]
  25. Takayanagi S. , Kawasaki H. , Sugimori K. , Yamada T. , Sugai A. , Ito T. , Yamasato K. , Shioda M. . ( 1996; ). Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. . Int J Syst Bacteriol 46:, 377–382. [CrossRef] [PubMed]
    [Google Scholar]
  26. Tamura H. , Goto K. , Yotsuyanagi T. , Nagayama M. . ( 1974; ). Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). . Talanta 21:, 314–318. [CrossRef] [PubMed]
    [Google Scholar]
  27. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wayne R. K. , Nash W. G. , O’Brien S. J. . ( 1987; ). Chromosomal evolution of the Canidae. I. Species with high diploid numbers. . Cytogenet Cell Genet 44:, 123–133. [CrossRef] [PubMed]
    [Google Scholar]
  29. Yoshida N. , Nakasato M. , Ohmura N. , Ando A. , Saiki H. , Ishii M. , Igarashi Y. . ( 2006; ). Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+ . . Curr Microbiol 53:, 406–411. [CrossRef] [PubMed]
    [Google Scholar]
  30. Zillig W. , Stetter K. O. , Wunderl S. , Schulz W. , Priess H. , Scholz I. . ( 1980; ). The Sulfolobus–“Caldariella” group: taxonomy on the bases of the structure of DNA-dependent RNA polymerases. . Arch Microbiol 125:, 259–269. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026591-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026591-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2395 - 2400

Analysis of the lipids of strain Ar-4 and related organisms.

Phylogenetic trees constructed with (a) minimal evolution and (b) maximum-parsimony methods according to 16S rRNA gene sequences showing the evolutionary distance between strain Ar-4 and other members of the family .

[ Combined PDF] 5988 KB



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error