1887

Abstract

Strains T138021-75, Pg19 and Pg20 (taxon 25 of Bisgaard) were isolated from guinea pigs and characterized. Strains T138021-75 and Pg20 showed identical 16S rRNA gene sequences and were distantly related to the published strain P224 with the highest 16S rRNA similarity of 98.6 %. These two strains showed 97.8 % sequence similarity with the type strain and other strains of and 97.3 % similarity with the type strain of , but <97 % similarity with all other type strains of the genus , including (96.9 %). Phylogenetic analysis of gene sequences showed that strain P224 had a distant position (89.9 % gene sequence similarity) compared with the three other strains (T138021-75, Pg20 and Pg19), which had identical gene sequences. These three novel strains also shared identical gene sequences. Phylogenetic analysis of the gene sequences showed a close relationship between the three novel strains and strain P224. The DNA–DNA reassociation value between strain T138021-75 and P224 was 81.6 % and 40.3 % between strain T138021-75 and the type strain of . Based on the DNA–DNA reassociation data, strain T138021-75 belonged to a separate species that was closely related to strain P224. Strain P224 differed from strains T138021-75, Pg20 and Pg19 in the following phenotypic characteristics: activity of ornithine carboxylase, hydrolysis of glycosides, and acid formation from maltose, dextrin, melibiose and raffinose, as well as reactions for α-galactosidase and β-xylosidase. Whole genome similarity calculations based on gene sequences showed that strains T138021-75 and P224 were related at the species level (0.932), whereas 16S rRNA and partial gene sequence comparisons showed a more divergent position of strain P224 compared with the novel strains, including a different host of isolation. The results showed that the three strains of taxon 25 represent a novel species for which the name sp. nov. is proposed. The type strain, T138021-75 ( = CCUG 59995 = DSM 23207) was isolated from purulent conjunctivitis in guinea pigs. Previous publications have documented both ubiquinones and demethylmenaquinone to be present in the type strain. The G+C content of the DNA of the type strain has been found to be 41.4 mol% ( ).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026518-0
2011-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1699.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026518-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef].[PubMed]
    [Google Scholar]
  2. Angen Ø. , Mutters R. , Caugant D. A. , Olsen J. E. , Bisgaard M. . ( 1999; ). Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov.. Int J Syst Bacteriol 49:, 67–86. [CrossRef].[PubMed]
    [Google Scholar]
  3. Angen O. , Ahrens P. , Kuhnert P. , Christensen H. , Mutters R. . ( 2003; ). Proposal of Histophilus somni gen. nov., sp. nov. for the three species incertae sedis ‘Haemophilus somnus’, ‘Haemophilus agni’ and ‘Histophilus ovis’. . Int J Syst Evol Microbiol 53:, 1449–1456. [CrossRef].[PubMed]
    [Google Scholar]
  4. Benson D. A. , Karsch-Mizrachi I. , Lipman D. J. , Ostell J. , Wheeler D. L. . ( 2006; ). GenBank. . Nucleic Acids Res 34: Database issue D16–D20. [CrossRef].[PubMed]
    [Google Scholar]
  5. Bisgaard M. . ( 1993; ). Ecology and significance of Pasteurellaceae in animals. . Zentralbl Bakteriol 279:, 7–26.[PubMed] [CrossRef]
    [Google Scholar]
  6. Bisgaard M. , Mutters R. , Mannheim W. . ( 1983; ). Characterization of some previously unreported taxa isolated from guinea pigs (Cavia porcellus) and provisionally classed with the “HPA-group”. . INSERM 114:, 227–244.
    [Google Scholar]
  7. Bisgaard M. , Houghton S. B. , Mutters R. , Stenzel A. . ( 1991; ). Reclassification of German, British and Dutch isolates of so-called Pasteurella multocida obtained from pneumonic calf lungs. . Vet Microbiol 26:, 115–124. [CrossRef].[PubMed]
    [Google Scholar]
  8. Bojesen A. M. , Larsen J. , Pedersen A. G. , Mörner T. , Mattson R. , Bisgaard M. . ( 2007; ). Identification of a novel Mannheimia granulomatis lineage from lesions in roe deer (Capreolus capreolus). . J Wildl Dis 43:, 345–352.[PubMed] [CrossRef]
    [Google Scholar]
  9. Boot R. , Bisgaard M. . ( 1995; ). Reclassification of 30 Pasteurellaceae strains isolated from rodents. . Lab Anim 29:, 314–319. [CrossRef].[PubMed]
    [Google Scholar]
  10. Boot R. , Walvoort H. C. . ( 1986; ). Otitis media in guinea pigs: pathology and bacteriology. . Lab Anim 20:, 242–248. [CrossRef].[PubMed]
    [Google Scholar]
  11. Boot R. , Oosterom J. , Walvoort H. C. . ( 1983; ). Recovery of members of the Pasteurella-Actinobacillus-group from guinea pigs. . Lab Anim 17:, 285–289. [CrossRef].[PubMed]
    [Google Scholar]
  12. Boot R. , Thuis H. , Bakker R. H. G. , Veenema J. L. . ( 1995; ). An enzyme-linked immunosorbent assay (ELISA) for monitoring antibodies to SP group Pasteurellaceae in guineapigs. . Lab Anim 29:, 59–65. [CrossRef].[PubMed]
    [Google Scholar]
  13. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef].[PubMed]
    [Google Scholar]
  14. Christensen H. , Bisgaard M. . ( 2008; ). Taxonomy and biodiversity of members of Pasteurellaceae . . In Pasteurellaceae, Biology, Genomics and Molecular Aspects, pp. 1–26. Edited by Kuhnert P. , Christensen H. . . Norfolk:: Caister Academic Press;.
    [Google Scholar]
  15. Christensen H. , Bisgaard M. , Angen Ø. , Olsen J. E. . ( 2002a; ). Final classification of Bisgaard taxon 9 as Actinobacillus arthritidis sp. nov. and recognition of a novel genomospecies for equine strains of Actinobacillus lignieresii . . Int J Syst Evol Microbiol 52:, 1239–1246. [CrossRef].[PubMed]
    [Google Scholar]
  16. Christensen H. , Bisgaard M. , Olsen J. E. . ( 2002b; ). Reclassification of equine isolates previously reported as Actinobacillus equuli, variants of A. equuli, Actinobacillus suis or Bisgaard taxon 11 and proposal of A. equuli subsp. equuli subsp. nov. and A. equuli subsp. haemolyticus subsp. nov.. Int J Syst Evol Microbiol 52:, 1569–1576. [CrossRef].[PubMed]
    [Google Scholar]
  17. Christensen H. , Kuhnert P. , Bisgaard M. , Mutters R. , Dziva F. , Olsen J. E. . ( 2005; ). Emended description of porcine [Pasteurella] aerogenes, [Pasteurella] mairii and [Actinobacillus] rossii . . Int J Syst Evol Microbiol 55:, 209–223. [CrossRef].[PubMed]
    [Google Scholar]
  18. Christensen H. , Kuhnert P. , Busse H.-J. , Frederiksen W. C. , Bisgaard M. . ( 2007; ). Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae . . Int J Syst Evol Microbiol 57:, 166–178.[CrossRef]
    [Google Scholar]
  19. Christie R. , Atkins N. E. , Munch-Petersen E. . ( 1944; ). A note on a lytic phenomenon shown by group B streptococci. . Aust J Exp Biol 22:, 197–200. [CrossRef]
    [Google Scholar]
  20. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef].[PubMed]
    [Google Scholar]
  21. Felsenstein J. . ( 1995; ). phylip (Phylogeny Inference Package) version 3.5c. . Seattle:: Department of Genetics, University of Washington;.
  22. Frederiksen W. . ( 1973; ). Pasteurella taxonomy and nomenclature. . In Yersinia, Pasteurella and Francisella, Contributions to Microbiology and Immunology, pp. 170–176. Vol. 2. Edited by Winblad S. . . Basel:: Karger;.
    [Google Scholar]
  23. Frederiksen W. . ( 1981; ). Gas producing species within Pasteurella and Actinobacillus . . In Haemophilus, Pasteurella and Actinobacillus, pp. 185–196. Edited by Kilian M. , Frederiksen W. , Biberstein E. L. . . London:: Academic Press;.
    [Google Scholar]
  24. Ganaway J. R. . ( 1976; ). Bacterial, mycoplasma and rickettsial diseases. . In The Biology of the Guinea Pig, pp. 121–135. Edited by Wagner J. E. , Manning P. J. . . New York:: Academic Press;.[CrossRef]
    [Google Scholar]
  25. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192.[CrossRef]
    [Google Scholar]
  26. Korczak B. , Christensen H. , Emler S. , Frey J. , Kuhnert P. . ( 2004; ). Phylogeny of the family Pasteurellaceae based on rpoB sequences. . Int J Syst Evol Microbiol 54:, 1393–1399. [CrossRef].[PubMed]
    [Google Scholar]
  27. Kuhnert P. , Korczak B. M. . ( 2006; ). Prediction of whole-genome DNA-DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). . Microbiology 152:, 2537–2548. [CrossRef].[PubMed]
    [Google Scholar]
  28. Kuhnert P. , Korczak B. M. , Christensen H. , Bisgaard M. . ( 2007; ). Emended description of Actinobacillus capsulatus Arseculeratne 1962, 38AL . . Int J Syst Evol Microbiol 57:, 625–632. [CrossRef].[PubMed]
    [Google Scholar]
  29. Kunstýr I. , Hartmann D. . ( 1983; ). Pasteurella pneumotropica and the prevalence of the AHP (Actinobacillus, Haemophilus, Pasteurella)-group in laboratory animals. . Lab Anim 17:, 156–160. [CrossRef].[PubMed]
    [Google Scholar]
  30. Mannheim W. . ( 1981; ). Taxonomic implications of DNA relatedness and quinone patterns in Actinobacillus, Haemophilus, and Pasteurella . . In Haemophilus, Pasteurella and Actinobacillus, pp. 265–280. Edited by Kilian M. , Frederiksen W. , Biberstein E. L. . . London:: Academic Press;.
    [Google Scholar]
  31. Mannheim W. , Pohl S. , Stenzel W. . ( 1978; ). [Unclassified pasteurella-like organisms isolated from guinea pigs (author’s transl.)]. . Zentralbl Bakteriol [Orig A] 241:, 329–336.[PubMed]
    [Google Scholar]
  32. Mollet C. , Drancourt M. , Raoult D. . ( 1997; ). rpoB sequence analysis as a novel basis for bacterial identification. . Mol Microbiol 26:, 1005–1011. [CrossRef].[PubMed]
    [Google Scholar]
  33. Mráz O. , Sisák F. , Jelen P. . ( 1979; ). The pasteurella carriers in farm and laboratory animals. . Comp Immunol Microbiol Infect Dis 2:, 437–445. [CrossRef].[PubMed]
    [Google Scholar]
  34. Mutters R. , Pohl S. , Mannheim W. . ( 1986; ). Transfer of Pasteurella ureae Jones 1962 to the genus Actinobacillus Brumpt 1910: Actinobacillus ureae comb. nov.. Int J Syst Bacteriol 36:, 343–344. [CrossRef]
    [Google Scholar]
  35. Mutters R. , Mannheim W. , Bisgaard M. . ( 1989; ). Taxonomy of the Group. . In Pasteurella and Pasteurellosis, pp. 3–34. Edited by Adlam C. , Rutter J. M. . . London:: Acad Press;.
    [Google Scholar]
  36. Olsen G. J. , Matsuda H. , Hagstrom R. , Overbeek R. . ( 1994; ). fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. . Comput Appl Biosci 10:, 41–48.[PubMed]
    [Google Scholar]
  37. Rice P. , Longden I. , Bleasby A. . ( 2000; ). emboss: the European molecular biology open software suite. . Trends Genet 16:, 276–277. [CrossRef].[PubMed]
    [Google Scholar]
  38. Stewart D. D. , Letscher R. M. . ( 1976; ). Isolation of an atypical Pasteurella-like organism from guinea pig abscesses. . Lab Anim Sci 26:, 482–485.[PubMed]
    [Google Scholar]
  39. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed]
    [Google Scholar]
  40. Tindall B. J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef].[PubMed]
    [Google Scholar]
  41. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  42. Zeigler D. R. . ( 2003; ). Gene sequences useful for predicting relatedness of whole genomes in bacteria. . Int J Syst Evol Microbiol 53:, 1893–1900. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026518-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026518-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1699 - 1704

Phylogenetic relationships between the new isolates and existing members of based on maximum-likelihood analysis of partial gene sequences.

Phylogenetic relationships between isolates of bacteria investigated related to existing members of based on maximum-likelihood analysis of partial gene sequences.

Strains investigated for the proposal of sp. nov. with GenBank accession numbers.

[ Combined PDF] 54 KB

 



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error