sp. nov., isolated from nodules of three leguminous species Free

Abstract

Four bacterial strains isolated from root nodules of , and plants grown in the Yunnan province of China were identified as a lineage within the genus according to the analysis of 16S rRNA gene sequences, sharing most similarity with P1-7 (99.1 % sequence similarity) and IAM 13570 (99.0 %). These strains also formed a distinctive group from the reference strains for defined species of the genus in a polyphasic approach, including the phylogenetic analyses of the 16S rRNA gene and housekeeping genes (), DNA–DNA hybridization, BOX-PCR fingerprinting, phenotypic characterization, SDS-PAGE of whole-cell proteins, and cellular fatty acid profiles. All the data obtained in this study suggested that these strains represent a novel species of the genus , for which the name sp. nov. is proposed. The DNA G+C content (mol%) of this species varied between 60.9 and 61.2 ( ). The type strain of sp. nov. is CCBAU 65647 ( = LMG 25295  = HAMBI 3073), which has a DNA G+C content of 60.9 mol% and forms effective nodules on .

Funding
This study was supported by the:
  • State Key Basic Research and Development Plan of China (Award 2006CB100206)
  • National Program for Basic S & T Platform Construction (Award 2005DKA21201-10)
  • National Natural Science Foundation of China (Award 30400001 and 30670001)
  • IPN, Mexico (Award SIP20100067) and SIP20090179)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026484-0
2011-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2582.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026484-0&mimeType=html&fmt=ahah

References

  1. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomic study of fast-growing soybean rhizobia and proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov.. Int J Syst Bacteriol 38:392–397 [View Article]
    [Google Scholar]
  2. Chen W. X., Wang E. T., Wang S. Y., Li Y. B., Chen X. Q., Li Y. 1995; Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159 [View Article][PubMed]
    [Google Scholar]
  3. de Bruijn F. J. 1992; Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58:2180–2187[PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  5. Diouf A., de Lajudie P., Neyra M., Kersters K., Gillis M., Martinez-Romero E., Gueye M. 2000; Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int J Syst Evol Microbiol 50:159–170 [View Article][PubMed]
    [Google Scholar]
  6. Frank B. 1889; Über die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7:332–346 (in German)
    [Google Scholar]
  7. Gao J. L., Sun J. G., Li Y., Wang E. T., Chen W. X. 1994; Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 44:151–158 [View Article]
    [Google Scholar]
  8. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P. W. 2001; Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048 [View Article][PubMed]
    [Google Scholar]
  9. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B. et al. other authors 1991; Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587 [View Article]
    [Google Scholar]
  10. Gu C. T., Wang E. T., Tian C. F., Han T. X., Chen W. F., Sui X. H., Chen W. X. 2008; Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368 [View Article][PubMed]
    [Google Scholar]
  11. Guan S. H., Chen W. F., Wang E. T., Lu Y. L., Yan X. R., Zhang X. X., Chen W. X. 2008; Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol 58:2646–2653 [View Article][PubMed]
    [Google Scholar]
  12. Han T. X., Wang E. T., Wu L. J., Chen W. F., Gu J. G., Gu C. T., Tian C. F., Chen W. X. 2008; Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699 [View Article][PubMed]
    [Google Scholar]
  13. Hou B. C., Wang E. T., Li Y. Jr, Jia R. Z., Chen W. F., Gao Y., Dong R. J., Chen W. X. 2009; Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. Int J Syst Evol Microbiol 59:3051–3057 [View Article][PubMed]
    [Google Scholar]
  14. Huber I., Selenska-Pobell S. 1994; Characterization of Rhizobium galegae by REP-PCR, PFGE and 16S rRNA sequencing. In Symbiotic Nitrogen Fixation pp. 153–158 Edited by Graham P. H., Sadowsky M. J., Vance C. P. Dordrecht: Kluwer; [CrossRef]
    [Google Scholar]
  15. Hurek T., Wagner B., Reinhold-Hurek B. 1997; Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339[PubMed]
    [Google Scholar]
  16. Jordan D. C. 1982; Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139 [View Article]
    [Google Scholar]
  17. Judd A. K., Schneider M., Sadowsky M. J., de Bruijn F. J. 1993; Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol 59:1702–1708[PubMed]
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  19. Kalita M., Stepkowski T., Łotocka B., Małek W. 2006; Phylogeny of nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia. Arch Microbiol 186:87–97 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  21. Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N. 2001; Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993[PubMed]
    [Google Scholar]
  22. Laranjo M., Alexandre A., Rivas R., Velázquez E., Young J. P., Oliveira S. 2008; Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400 [View Article][PubMed]
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  24. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  25. Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A. 2008; Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214 [View Article][PubMed]
    [Google Scholar]
  26. Nick G., Lindstrom K. 1994; Use of repetitive sequences and the polymerase chain reaction to fingerprint the genomic DNA of Rhizobium galegae strains and to identify the DNA obtained by sonicating the liquid cultures and root nodules. Syst Appl Microbiol 17:265–273 [CrossRef]
    [Google Scholar]
  27. Nick G., Rasanen L. A., de Lajudie P., Gillis M., Lindstrom K. 1999; Genomic screening of rhizobia isolated from root nodules of tropical leguminous trees using DNA–DNA dot–blot hybridization and rep-PCR. Syst Appl Microbiol 22:287–299 [CrossRef]
    [Google Scholar]
  28. Quan Z. X., Bae H. S., Baek J. H., Chen W. F., Im W. T., Lee S. T. 2005; Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549 [View Article][PubMed]
    [Google Scholar]
  29. Ren W., Chen W. F., Sui X. H., Wang E. T., Chen W. X. 2011; Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species. Int J Syst Evol Microbiol 61:580–586 [View Article][PubMed]
    [Google Scholar]
  30. Sarita S., Sharma P. K., Priefer U. B., Prell J. 2005; Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11 [CrossRef]
    [Google Scholar]
  31. Schutter M. E., Dick R. P. 2000; Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64:1659–1668 [View Article]
    [Google Scholar]
  32. Tajima F., Nei M. 1984; Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285[PubMed]
    [Google Scholar]
  33. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526[PubMed]
    [Google Scholar]
  34. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  35. Tan Z. Y., Xu X. D., Wang E. T., Gao J. L., Martinez-Romero E., Chen W. X. 1997; Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879 [View Article][PubMed]
    [Google Scholar]
  36. Terefework Z., Kaijalainen S., Lindström K. 2001; AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis . J Biotechnol 91:169–180 [View Article][PubMed]
    [Google Scholar]
  37. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [View Article][PubMed]
    [Google Scholar]
  38. Trujillo M. E., Willems A., Abril A., Planchuelo A. M., Rivas R., Ludeña D., Mateos P. F., Martínez-Molina E., Velázquez E. 2005; Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov.. Appl Environ Microbiol 71:1318–1327 [View Article][PubMed]
    [Google Scholar]
  39. Turner S. L., Young J. P. 2000; The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319[PubMed] [CrossRef]
    [Google Scholar]
  40. Valverde A., Igual J. M., Peix A., Cervantes E., Velázquez E. 2006; Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris . Int J Syst Evol Microbiol 56:2631–2637 [View Article][PubMed]
    [Google Scholar]
  41. van Berkum P., Badri Y., Elia P., Aouani M. E., Eardly B. D. 2007; Chromosomal and symbiotic relationships of rhizobia nodulating Medicago truncatula and M. laciniata . Appl Environ Microbiol 73:7597–7604 [View Article][PubMed]
    [Google Scholar]
  42. Vauterin L., Vauterin P. 1992; Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41
    [Google Scholar]
  43. Versalovic J., Schneider M., De Bruijn F. J., Lupski J. R. 1994; Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40
    [Google Scholar]
  44. Vincent J. M. 1970 A Manual for the Practical Study of Root-Nodule Bacteria Oxford: Blackwell Scientific;
    [Google Scholar]
  45. Vinuesa P., Silva C., Lorite M. J., Izaguirre-Mayoral M. L., Bedmar E. J., Martínez-Romero E. 2005a; Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716 [View Article][PubMed]
    [Google Scholar]
  46. Vinuesa P., Silva C., Werner D., Martínez-Romero E. 2005b; Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54 [View Article][PubMed]
    [Google Scholar]
  47. Wang F. Q., Wang E. T., Zhang Y. F., Chen W. X. 2006; Characterization of rhizobia isolated from Albizia spp. in comparison with microsymbionts of Acacia spp. and Leucaena leucocephala grown in China. Syst Appl Microbiol 29:502–517 [View Article][PubMed]
    [Google Scholar]
  48. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  49. Yoon J. H., Kang S. J., Yi H. S., Oh T. K., Ryu C. M. 2010; Rhizobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:1387–1393 [View Article][PubMed]
    [Google Scholar]
  50. Zhang R. J., Hou B. C., Wang E. T., Li Y. Jr, Zhang X. X., Chen W. X. 2011a; Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra . Int J Syst Evol Microbiol 61:512–517[PubMed] [CrossRef]
    [Google Scholar]
  51. Zhang G. X., Ren S. Z., Xu M. Y., Zeng G. Q., Luo H. D., Chen J. L., Tan Z. Y., Sun G. P. 2011b; Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 61:816–822[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026484-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026484-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed