1887

Abstract

Nineteen strains of Gram-positive, non-motile, non-spore-forming, catalase-positive, rod-shaped bacteria isolated from pigs were characterized by using biochemical, molecular chemical and molecular genetic methods. Two distinct groups of organisms were discerned, based on their colonial morphology, CAMP (Christie–Atkins–Munch-Petersen) reaction and numerical profile by using the API Coryne system. The first group (13 strains) gave a doubtful discrimination between and , whilst the second group (six strains) were identified tentatively as . Comparative 16S rRNA gene sequencing studies demonstrated that all of the isolates belonged phylogenetically to the genus . The first group of organisms was highly similar to with respect to 16S rRNA gene sequences and physiological characteristics, whereas the remaining six isolates formed a hitherto unknown subline within the genus, associated with a small subcluster of species that included and its close relatives. The unknown sp. was distinguished readily from these and other species of the genus by biochemical tests. Based on both phenotypic and phylogenetic evidence, it is proposed that the new isolates from pigs should be classified as a novel species, sp. nov. The type strain is P81/02 (=CECT 5724=CCUG 46963).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02645-0
2003-11-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs532027.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02645-0&mimeType=html&fmt=ahah

References

  1. Brennan, N. M., Brown, R., Goodfellow, M., Ward, A. C., Beresford, T. P., Simpson, P. J., Fox, P. F. & Cogan, T. M. ( 2001; ). Corynebacterium mooreparkense sp. nov. and Corynebacterium casei sp. nov., isolated from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol 51, 843–852.[CrossRef]
    [Google Scholar]
  2. Collins, M. D., Hoyles, L., Lawson, P. A., Falsen, E., Robson, R. L. & Foster, G. ( 1999; ). Phenotypic and phylogenetic characterization of a new Corynebacterium species from dogs: description of Corynebacterium auriscanis sp. nov. J Clin Microbiol 37, 3443–3447.
    [Google Scholar]
  3. Collins, M. D., Hoyles, L., Foster, G., Sjödén, B. & Falsen, E. ( 2001a; ). Corynebacterium capitovis sp. nov., from a sheep. Int J Syst Evol Microbiol 51, 857–860.[CrossRef]
    [Google Scholar]
  4. Collins, M. D., Hoyles, L., Hutson, R. A., Foster, G. & Falsen, E. ( 2001b; ). Corynebacterium testudinoris sp. nov., from a tortoise, and Corynebacterium felinum sp. nov., from a Scottish wild cat. Int J Syst Evol Microbiol 51, 1349–1352.
    [Google Scholar]
  5. Felsenstein, J. ( 1989; ). phylip – Phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  6. Fernández-Garayzábal, J. F., Collins, M. D., Hutson, R. A., Fernández, E., Monasterio, R., Marco, J. & Domínguez, L. ( 1997; ). Corynebacterium mastitidis sp. nov., isolated from milk of sheep with subclinical mastitis. Int J Syst Bacteriol 47, 1082–1085.[CrossRef]
    [Google Scholar]
  7. Fernández-Garayzábal, J. F., Collins, M. D., Hutson, R. A., Gonzalez, I., Fernández, E. & Domínguez, L. ( 1998; ). Corynebacterium camporealensis sp. nov., associated with subclinical mastitis in sheep. Int J Syst Bacteriol 48, 463–468.[CrossRef]
    [Google Scholar]
  8. Funke, G., Lawson, P. A., Bernard, K. A. & Collins, M. D. ( 1996; ). Most Corynebacterium xerosis strains identified in the routine clinical laboratory correspond to Corynebacterium amycolatum. J Clin Microbiol 34, 1124–1128.
    [Google Scholar]
  9. Funke, G., von Graevenitz, A., Clarridge, J. E., III & Bernard, K. A. ( 1997; ). Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10, 125–159.
    [Google Scholar]
  10. Funke, G., Osorio, C. R., Frei, R., Riegel, P. & Collins, M. D. ( 1998; ). Corynebacterium confusum sp. nov., isolated from human clinical specimens. Int J Syst Bacteriol 48, 1291–1296.[CrossRef]
    [Google Scholar]
  11. Goyache, J., Vela, A. I., Collins, M. D. & 7 other authors ( 2003; ). Corynebacterium spheniscorum sp. nov., isolated from the cloacae of wild penguins. Int J Syst Evol Microbiol 53, 43–46.[CrossRef]
    [Google Scholar]
  12. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  13. Klatte, S., Kroppenstedt, R. M. & Rainey, F. A. ( 1994; ). Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus-species. Syst Appl Microbiol 17, 355–360.[CrossRef]
    [Google Scholar]
  14. Knox, K. L. & Holmes, A. H. ( 2002; ). Nosocomial endocarditis caused by Corynebacterium amycolatum and other nondiphtheriae corynebacteria. Emerg Infect Dis 8, 97–99.[CrossRef]
    [Google Scholar]
  15. Malik, A. S. & Johari, M. R. ( 1995; ). Pneumonia, pericarditis, and endocarditis in a child with Corynebacterium xerosis septicemia. Clin Infect Dis 20, 191–192.
    [Google Scholar]
  16. Martínez-Martínez, L., Suárez, A. I., Winstanley, J., Ortega, M. C. & Bernard, K. ( 1995; ). Phenotypic characteristics of 31 strains of Corynebacterium striatum isolated from clinical samples. J Clin Microbiol 33, 2458–2461.
    [Google Scholar]
  17. Ojeda-Vargas, M., González-Fernández, M. A., Romero, D., Cedrés, A. & Monzón-Moreno, C. ( 2000; ). Pericarditis caused by Corynebacterium urealyticum. Clin Microbiol Infect 6, 560–561.[CrossRef]
    [Google Scholar]
  18. Renaud, F. N. R., Aubel, D., Riegel, P., Meugnier, H. & Bollet, C. ( 2001; ). Corynebacterium freneyi sp. nov., α-glucosidase-positive strains related to Corynebacterium xerosis. Int J Syst Evol Microbiol 51, 1723–1728.[CrossRef]
    [Google Scholar]
  19. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  20. Shukla, K. S., Vevea, D. N., Frank, D. N., Pace, N. R. & Reed, K. D. ( 2001; ). Isolation and characterization of a black-pigmented Corynebacterium sp. from a woman with spontaneous abortion. J Clin Microbiol 39, 1109–1113.[CrossRef]
    [Google Scholar]
  21. Sjödén, B., Funke, G., Izquierdo, A., Akervall, E. & Collins, M. D. ( 1998; ). Description of some coryneform bacteria isolated from human clinical specimens as Corynebacterium falsenii sp. nov. Int J Syst Bacteriol 48, 69–74.[CrossRef]
    [Google Scholar]
  22. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  23. Takeuchi, M., Sakane, T., Nihira, T., Yamada, Y. & Imai, K. ( 1999; ). Corynebacterium terpenotabidum sp. nov., a bacterium capable of degrading squalene. Int J Syst Bacteriol 49, 223–229.[CrossRef]
    [Google Scholar]
  24. Tanner, M. A., Shoskes, D., Shahed, A. & Pace, N. R. ( 1999; ). Prevalence of corynebacterial 16S rRNA sequences in patients with bacterial and “nonbacterial” prostatitis. J Clin Microbiol 37, 1863–1870.
    [Google Scholar]
  25. Vela, A. I., Fernández, E., Lawson, P. A., Latre, M. V., Falsen, E., Domínguez, L., Collins, M. D. & Fernández-Garayzábal, J. F. ( 2002; ). Streptococcus entericus sp. nov., isolated from cattle intestine. Int J Syst Evol Microbiol 52, 665–669.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02645-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02645-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 2027 – 2031

Unrooted tree based on 16S rRNA, showing the phylogenetic relationships of sp. nov. [PDF](178 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error