1887

Abstract

The taxonomic position, growth characteristics and antibiotic resistance properties of a slightly yellow-pigmented bacterial strain, designated R26, isolated from the midgut of the mosquito , were studied. The isolate produced rod-shaped cells, which stained Gram-negative. The bacterium had two growth optima at 30–31 °C and 37 °C. Strain R26 demonstrated natural antibiotic resistance to ampicillin, chloramphenicol, kanamycin, streptomycin and tetracycline. 16S rRNA gene sequence analysis revealed that the isolate showed 98.6 % sequence similarity to that of ATCC 13253 and 98.2 % similarity to that of GTC 862. The major fatty acids of strain R26 were iso-C, iso-C 3-OH and summed feature 4 (iso-C 2-OH and/or Cω7/). Strain R26 contained only menaquinone MK-6 and showed a complex polar lipid profile consisting of diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and unknown polar lipids and glycolipids. DNA–DNA hybridization experiments with CCUG 214 ( = ATCC 13253) and KCTC 12492 ( = GTC 862) gave relatedness values of 34.5 % (reciprocal 41.5 %) and 35.0 % (reciprocal 25.7 %), respectively. DNA–DNA hybridization results and some differentiating biochemical properties indicate that strain R26 represents a novel species, for which the name sp. nov. is proposed. The type strain is R26 ( = CCUG 60038  = CCM 7804).

Erratum

This article contains a correction applying to the following content:
sp. nov., isolated from the midgut of the mosquito
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026393-0
2011-11-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2670.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026393-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Hugo C., Bruun B. 2006; The genera Chryseobacterium and Elizabethkingia . In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. vol. 7 pp. 638–676 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  2. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  4. Dong Y., Manfredini F., Dimopoulos G. 2009; Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5:e1000423 [CrossRef][PubMed]
    [Google Scholar]
  5. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  7. Kajla M. K., Andreeva O., Gilbreath T. M. III, Paskewitz S. M. 2010; Characterization of expression, activity and role in antibacterial immunity of Anopheles gambiae lysozyme c-1. Comp Biochem Physiol B Biochem Mol Biol 155:201–209 [CrossRef][PubMed]
    [Google Scholar]
  8. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P., Arun A. B., Young C.-C., Chen W.-M., Sridhar K. R., Rekha P. D. 2010; Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 60:1765–1769 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim K. K., Kim M. K., Lim J. H., Park H. Y., Lee S.-T. 2005; Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov.. Int J Syst Evol Microbiol 55:1287–1293 [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  14. Lindh J. M., Borg-Karlson A.-K., Faye I. 2008; Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop 107:242–250 [CrossRef][PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  16. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  17. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48[PubMed]
    [Google Scholar]
  18. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  19. Reichenbach H. 1992; The order Cytophagales . In The Prokaryotes, 2nd edn. vol. 4 pp. 3631–3675 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer; [CrossRef]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R. 1994; Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40
    [Google Scholar]
  22. Welsh J., McClelland M. 1990; Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218 [CrossRef][PubMed]
    [Google Scholar]
  23. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. 1990; DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535 [CrossRef][PubMed]
    [Google Scholar]
  24. Ziemke F., Brettar I., Höfle M. G. 1997; Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol 13:63–74 [CrossRef]
    [Google Scholar]
  25. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:179–186 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026393-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026393-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error