1887

Abstract

Three strains, RBY-1, PHD-1 and PHD-2, were isolated from fruits in Thailand. The strains were Gram-negative, aerobic rods with polar flagella, produced acetic acid from ethanol and did not oxidize acetate or lactate. In phylogenetic trees based on 16S rRNA gene sequences and 16S–23S rRNA gene internal transcribed spacer (ITS) sequences, the strains formed a cluster separate from the type strains of recognized species of the genus . The calculated 16S rRNA gene sequence and 16S–23S rRNA gene ITS sequence similarities were respectively 97.7–99.7 % and 77.3–98.1 %. DNA G+C contents ranged from 57.2 to 57.6 mol%. The strains showed high DNA–DNA relatedness of 100 % to one another, but low DNA–DNA relatedness of 11–34 % to the tested type strains of recognized species. Q-10 was the major quinone. On the basis of the genotypic and phenotypic data obtained, the three strains clearly represent a novel species, for which the name sp. nov. is proposed. The type strain is RBY-1 ( = BCC 36733 = NBRC 106061 = PCU 318), whose DNA G+C content is 57.2 mol%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026385-0
2011-09-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2117.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026385-0&mimeType=html&fmt=ahah

References

  1. Asai T. , Iizuka H. , Komagata K. . ( 1964; ). The flagellation and taxonomy of genera, Gluconobacter and Acetobacter with reference to the existence of intermediate strains. . J Gen Appl Microbiol 10:, 95–126. [CrossRef]
    [Google Scholar]
  2. De Ley J. . ( 1961; ). Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. . J Gen Microbiol 24:, 31–50.[PubMed] [CrossRef]
    [Google Scholar]
  3. Dijkstra J. , De Jager C. P. . ( 1998; ). Practical Plant Virology: Protocols and Exercises. Berlin:: Springer Verlag;.[CrossRef]
    [Google Scholar]
  4. Ezaki T. , Yamamoto N. , Ninomiya K. , Suzuki S. , Yabuuchi E. . ( 1983; ). Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov.. Int J Syst Bacteriol 33:, 683–698. [CrossRef]
    [Google Scholar]
  5. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef].[PubMed]
    [Google Scholar]
  7. Felsenstein J. . ( 1983; ). Parsimony in systematics: biological and statistical issues. . Annu Rev Ecol Syst 14:, 313–333. [CrossRef]
    [Google Scholar]
  8. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Felsenstein J. . ( 1995; ). phylip (phylogeny inference package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  10. Forbes L. . ( 1981; ). Rapid flagella stain. . J Clin Microbiol 13:, 807–809.[PubMed]
    [Google Scholar]
  11. Gosselé F. , Swings J. , Kersters K. , De Ley J. . ( 1983; ). Numerical analysis of phenotypic features and protein gel electrophoregrams of Gluconobacter Asai 1935 emend. mut. char. Asai, Iizuka, and Komagata 1964. . Int J Syst Bacteriol 33:, 65–81. [CrossRef]
    [Google Scholar]
  12. Katsura K. , Yamada Y. , Uchimura T. , Komagata K. . ( 2002; ). Gluconobacter asaii Mason and Claus 1989 is a junior subjective synonym of Gluconobacter cerinus Yamada and Akita 1984. . Int J Syst Evol Microbiol 52:, 1635–1640. [CrossRef].[PubMed]
    [Google Scholar]
  13. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef].[PubMed]
    [Google Scholar]
  14. Malimas T. , Yukphan P. , Takahashi M. , Potacharoen W. , Tanasupawat S. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2006; ). Heterogeneity of strains assigned to Gluconobacter frateurii Mason and Claus 1989 based on restriction analysis of 16S–23S rDNA internal transcribed spacer regions. . Biosci Biotechnol Biochem 70:, 684–690. [CrossRef].[PubMed]
    [Google Scholar]
  15. Malimas T. , Yukphan P. , Takahashi M. , Kaneyasu M. , Potacharoen W. , Tanasupawat S. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2007; ). Gluconobacter kondonii sp. nov., an acetic acid bacterium in the α-Proteobacteria . . J Gen Appl Microbiol 53:, 301–307. [CrossRef].[PubMed]
    [Google Scholar]
  16. Malimas T. , Yukphan P. , Takahashi M. , Kaneyasu M. , Potacharoen W. , Tanasupawat S. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2008a; ). Gluconobacter kondonii sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List no. 120. . Int J Syst Evol Microbiol 58, 529–530.[CrossRef]
    [Google Scholar]
  17. Malimas T. , Yukphan P. , Takahashi M. , Muramatsu Y. , Kaneyasu M. , Potacharoen W. , Tanasupawat S. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2008b; ). Gluconobacter roseus (ex Asai 1935) sp. nov., nom. rev., a pink-colored acetic acid bacterium in the Alphaproteobacteria . . J Gen Appl Microbiol 54:, 119–125. [CrossRef].[PubMed]
    [Google Scholar]
  18. Malimas T. , Yukphan P. , Takahashi M. , Muramatsu Y. , Kaneyasu M. , Potacharoen W. , Tanasupawat S. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2008c; ). Gluconobacter sphaericus (Ameyama 1975) comb. nov., a brown pigment-producing acetic acid bacterium in the Alphaproteobacteria . . J Gen Appl Microbiol 54:, 211–220. [CrossRef].[PubMed]
    [Google Scholar]
  19. Malimas T. , Yukphan P. , Takahashi M. , Muramatsu M. , Kaneyasu M. , Potacharoen W. , Tanasupawat S. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2009a; ). Gluconobacter kanchanaburiensis sp. nov., a brown pigment-producing acetic acid bacterium for Thai isolates in the α-Proteobacteria . . J Gen Appl Microbiol 55:, 247–254. [CrossRef].[PubMed]
    [Google Scholar]
  20. Malimas T. , Yukphan P. , Lundaa T. , Muramatsu Y. , Takahashi M. , Kaneyasu M. , Potacharoen W. , Tanasupawat S. , Nakagawa Y. et al. ( 2009b; ). Gluconobacter japonicus sp. nov., an acetic acid bacterium in the Alphaproteobacteria . . Int J Syst Evol Microbiol 59:, 466–471. [CrossRef].[PubMed]
    [Google Scholar]
  21. Marmur J. . ( 1961; ). A procedure for isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  22. Mason L. M. , Claus G. W. . ( 1989; ). Phenotypic characteristics correlated with deoxyribonucleic acid sequence similarities for three species of Gluconobacter: G. oxydans (Henneberg 1897) De Ley 1961, G. frateurii sp. nov. and G. asaii sp. nov.. Int J Syst Bacteriol 39:, 174–184. [CrossRef]
    [Google Scholar]
  23. Saito H. , Miura K. I. . ( 1963; ). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef] [PubMed]
    [Google Scholar]
  24. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Skerman V. B. D. , McGowan V. , Sneath P. H. A. . ( 1980; ). Approved Lists of Bacterial Names. . Int J Syst Bacteriol 30:, 225–420. [CrossRef]
    [Google Scholar]
  26. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  27. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef].[PubMed]
    [Google Scholar]
  28. Tanaka M. , Murakami S. , Shinke R. , Aoki K. . ( 1999; ). Reclassification of the strains with low G+C contents of DNA belonging to the genus Gluconobacter Asai 1935 (Acetobacteraceae). . Biosci Biotechnol Biochem 63:, 989–992. [CrossRef]
    [Google Scholar]
  29. Tanasupawat S. , Thawai C. , Yukphan P. , Moonmangmee D. , Itoh T. , Adachi O. , Yamada Y. . ( 2004; ). Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria . . J Gen Appl Microbiol 50:, 159–167. [CrossRef].[PubMed]
    [Google Scholar]
  30. Tanasupawat S. , Thawai C. , Yukphan P. , Moonmangmee D. , Itoh T. , Adachi O. , Yamada Y. . ( 2005; ). Gluconobacter thailandicus Tanasupawat et al. 2005. In Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 103. . Int J Syst Evol Microbiol 55, 983–985.[CrossRef]
    [Google Scholar]
  31. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed]
    [Google Scholar]
  32. Verlander C. P. . ( 1992; ). Detection of horseradish peroxidase by colorimetry. . In Nonisotopic DNA Probe Techniques, pp. 185–201. Edited by Kricka L. J. . . New York:: Academic Press;.[CrossRef]
    [Google Scholar]
  33. Yamada Y. , Akita M. . ( 1984a; ). An electrophoretic comparison of enzymes in strains of Gluconobacter species. . J Gen Appl Microbiol 30:, 115–126. [CrossRef]
    [Google Scholar]
  34. Yamada Y. , Akita M. . ( 1984b; ). Gluconobacter cerinus. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no. 16. . Int J Syst Bacteriol 34:, 503–504. [CrossRef]
    [Google Scholar]
  35. Yamada Y. , Aida K. , Uemura T. . ( 1969; ). Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of Gluconobacter and Acetobacter, especially of the so-called intermediate strains. . J Gen Appl Microbiol 15:, 186–196.[CrossRef]
    [Google Scholar]
  36. Yamada Y. , Okada Y. , Kondo K. . ( 1976; ). Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. . J Gen Appl Microbiol 22:, 237–245. [CrossRef]
    [Google Scholar]
  37. Yamada Y. , Hosono R. , Lisdyanti P. , Widyastuti Y. , Saono S. , Uchimura T. , Komagata K. . ( 1999; ). Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter . . J Gen Appl Microbiol 45:, 23–28. [CrossRef].[PubMed]
    [Google Scholar]
  38. Yamada Y. , Katsura K. , Kawasaki H. , Widyastuti Y. , Saono S. , Seki T. , Uchimura T. , Komagata K. . ( 2000; ). Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria . . Int J Syst Evol Microbiol 50:, 823–829. [CrossRef].[PubMed]
    [Google Scholar]
  39. Yukphan P. , Potacharoen W. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2004a; ). Identification of strains assigned to the genus Gluconobacter Asai 1935 based on the sequence and the restriction analyses of the 16S–23S rDNA internal transcribed spacer regions. . J Gen Appl Microbiol 50:, 9–15. [CrossRef].[PubMed]
    [Google Scholar]
  40. Yukphan P. , Malimas T. , Takahashi M. , Potacharoen W. , Busabun T. , Tanasupawat S. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2004b; ). Re-identification of Gluconobacter strains based on restriction analysis of 16S–23S rDNA internal transcribed spacer regions. . J Gen Appl Microbiol 50:, 189–195. [CrossRef].[PubMed]
    [Google Scholar]
  41. Yukphan P. , Takahashi M. , Potacharoen W. , Tanasupawat S. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2004c; ). Gluconobacter albidus (ex Kondo and Ameyama 1958) sp. nov., nom. rev., an acetic acid bacterium in the α-Proteobacteria . . J Gen Appl Microbiol 50:, 235–242. [CrossRef].[PubMed]
    [Google Scholar]
  42. Yukphan P. , Takahashi M. , Potacharoen W. , Tanasupawat S. , Nakagawa Y. , Tanticharoen M. , Yamada Y. . ( 2005; ). Gluconobacter albidus (ex Kondo and Ameyama 1958) Yukphan et al. 2005. In Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 103. . Int J Syst Evol Microbiol 55, 983–985.[CrossRef]
    [Google Scholar]
  43. Yukphan P. , Malimas T. , Lundaa T. , Muramatsu Y. , Takahashi M. , Kaneyasu M. , Tanasupawat S. , Nakagawa Y. , Suzuki K. et al. ( 2010; ). Gluconobacter wancherniae sp. nov., an acetic acid bacterium from Thai isolates in the α-Proteobacteria . . J Gen Appl Microbiol 56:, 67–73. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026385-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026385-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2117–2122

DNA–DNA relatedness of strains RBY-1 , PHD-1 and PHD-2

Phylogenetic tree based on 16S rRNA gene sequences, constructed by the maximum-parsimony method

Phylogenetic tree based on 16S rRNA gene sequences, constructed by the maximum-likelihood method

Phylogenetic tree based on 16S–23S rRNA gene ITS sequences, constructed by the maximum-parsimony method

Phylogenetic tree based on 16S–23S rRNA gene ITS sequences, constructed by the maximum-likelihood method

Digestion of 16S–23S rRNA gene ITS PCR products of strains RBY-1 , PHD-1 and PHD-2 with restriction endonucleases NI, II and I

[ Single PDF file] (195 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error