sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment Free

Abstract

Strain CJ2, capable of growth on naphthalene as a sole carbon and energy source, was isolated from coal-tar-contaminated freshwater sediment. The Gram reaction of strain CJ2 was negative. The cells were non-spore-forming, non-motile cocci (without flagella). The isolate was found to be an aerobic heterotroph capable of utilizing glucose and other simple sugars. Growth was observed between 4 and 25 °C (optimum, 20 °C) and between pH 6·0 and 9·0 (optimum, pH 7·0–7·5). The G+C content of the genomic DNA was 61·5 mol% and the major quinone was ubiquinone-8. The peptidoglycan of strain CJ2 was determined as belonging to type A1-, -diaminopimelic acid. The major fatty acids of strain CJ2 were 16 : 17 (67·0 %), 16 : 0 (19·6 %), 18 : 17 (∼7·9 %) and 10 : 0 3-OH (∼2·5 %). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Mycolic acid and glycolipids could not be detected. Comparative 16S rDNA analysis indicated that strain CJ2 is related to the family and that the nearest phylogenetic relative was 34-P (97·1 % similarity). On the basis of the physiological and molecular properties, the naphthalene-degrading isolate was designated sp. nov. The type strain is CJ2 (=ATCC BAA-779=DSM 15660).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02636-0
2004-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540093.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02636-0&mimeType=html&fmt=ahah

References

  1. Bakermans C., Hohnstock-Ashe A. M., Padmanabhan S., Padmanabhan P., Madsen E. L. 2002; Geochemical and physiological evidence for mixed aerobic and anaerobic field biodegradation of coal tar waste by subsurface microbial communities. Microb Ecol 44:107–117 [CrossRef]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  3. Cole J. R., Chai B., Marsh T. L. 8 other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  4. Daane L. L., Harjono I., Zylstra G. J., Haggblom M. M. 2001; Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 2002 phylip (phylogeny inference package), version 3.6a University of Washington; Seattle, USA:
    [Google Scholar]
  6. Fuenmayor S. L., Wild M., Boyes A. L., Williams P. A. 1998; A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 180:2522–2530
    [Google Scholar]
  7. Herrick J. B., Stuart-Keil K. G., Ghiorse W. C., Madsen E. L. 1997; Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol 63:2330–2337
    [Google Scholar]
  8. Irgens R. L., Gosink J. J., Staley J. T. 1996; Polaromonas vacuolata gen. nov., sp. nov. a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol 46:822–826 [CrossRef]
    [Google Scholar]
  9. Kiyohara H., Nagao K., Kouno K., Yano K. 1982; Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43:458–461
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–208
    [Google Scholar]
  11. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–147 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  12. Laurie A. D., Lloyd-Jones G. 1999; The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181:531–540
    [Google Scholar]
  13. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882
    [Google Scholar]
  14. Madsen E. L., Sinclair J. L., Ghiorse W. C. 1991; In situ biodegradation: microbiological patterns in a contaminated aquifer. Science 252:830–833 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479:297–306 [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., Minnikin S. M., O'Donnell A. G., Goodfellow M. 1984; Extraction of mycobacterial mycolic acids and other-long-chain compounds by an alkaline methanolysis procedure. J Microbiol Methods 2:243–249 [CrossRef]
    [Google Scholar]
  17. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determination and cytological light microscopy. In Methods for General and Molecular Bacteriology pp  21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Ostle A. G., Holt J. G. 1982; Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241
    [Google Scholar]
  19. Serdar C. M., Gibson D. T. 1989; Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria. Biochem Biophys Res Commun 164:772–779 [CrossRef]
    [Google Scholar]
  20. Simon M. J., Osslund T. D., Saunders R. 7 other authors 1993; Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37 [CrossRef]
    [Google Scholar]
  21. Staley J. T. 1968; Prosthecomicrobium and Ancalomicrobium : new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942
    [Google Scholar]
  22. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  23. Stanier R. Y., Ingraham J. L., Wheelis M. L., Painter P. R. 1986 The Microbial World , 5th edn. Englewood Cliffs, NJ: Prentice Hall;
    [Google Scholar]
  24. Stuart-Keil K. G., Hohnstock A. M., Drees K. P., Herrick J. B., Madsen E. L. 1998; Plasmids responsible for horizontal transfer of naphthalene catabolism genes between bacteria at a coal tar-contaminated site are homologous to pDTG1 from Pseudomonas putida NCIB 9816-4. Appl Environ Microbiol 64:3633–3640
    [Google Scholar]
  25. Takeda M., Kamagata Y., Ghiorse W. C., Hanada S., Koizumi J. 2002; Caldimonas manganoxidans gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading, manganese-oxidizing thermophile. Int J Syst Evol Microbiol 52:895–900 [CrossRef]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  27. Tomiyasu I., Yano I. 1984; Separation and analysis of novel polyunsaturated mycolic acids from a psychrophilic, acid-fast bacterium, Gordona aurantiaca . Eur J Biochem 139:173–180 [CrossRef]
    [Google Scholar]
  28. Wen A., Fegan M., Hayward C., Chakraborty S., Sly L. I. 1999; Phylogenetic relationships among members of the Comamonadaceae , and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al . 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49:567–576 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02636-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02636-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed