1887

Abstract

Two novel Gram-negative, oxidase- and catalase-positive, rod-shaped bacterial strains, designated YCSA28 and YCSA39, were isolated from sediment of Daqiao saltern, Jimo, Qingdao, on the east coast of China. The two strains grew optimally at 28–30 °C, at pH 7.5 and in the presence of 7–8 % (w/v) NaCl. They were assigned to the genus , class , based on 16S rRNA gene sequence analysis. The major cellular fatty acids of the two strains were Cω7 (42.9 %), C (23.1 %) and Cω7/ω6 (18.0 %), and Q-9 was the major ubiquinone. The G+C content of the DNA of strains YCSA28 and YCSA39 was 63.7 and 63.9 mol%, respectively. The predominant respiratory lipoquinone, cellular fatty acid profiles and DNA G+C content of strains YCSA28 and YCSA39 were consistent with those of recognized species of the genus . Levels of DNA–DNA relatedness between strains YCSA28 and YCSA39, between YCSA28 and Al12, and between YCSA39 and Al12 were 95, 45 and 50 %, respectively. Together, these data indicated that strains YCSA28 and YCSA39 represent a single novel species of the genus , for which the name sp. nov. is proposed. The type strain is YCSA28 ( = CGMCC 1.9150  = NCCB 100305  = MCCC 1B00920).

Funding
This study was supported by the:
  • , National Infrastructure of Natural Resources for Science and Technology Program of China , (Award 2005DKA21209 and 2004DKA30640)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026344-0
2011-07-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1612.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026344-0&mimeType=html&fmt=ahah

References

  1. Akagawa M., Yamasato K. 1989; Synonymy of Alcaligenes aquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta: Deleya aquamarina comb. nov. as the type species of the genus Deleya . Int J Syst Bacteriol 39:462–466 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  3. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Béjar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [CrossRef][PubMed]
    [Google Scholar]
  4. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W. 2009; Genbank. Nucleic Acids Res 37:Suppl 1D26–D31 [CrossRef][PubMed]
    [Google Scholar]
  5. Berendes F., Gottschalk G., Heine-Dobbernack E., Moore E. R. B., Tindall B. J. 1996; Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 19:158–167 [CrossRef]
    [Google Scholar]
  6. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  7. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Bauman et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  8. Dong X.-Z., Cai M.-Y. (editors) 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press;
    [Google Scholar]
  9. González-Domenech C. M., Béjar V., Martínez-Checa F., Quesada E. 2008; Halomonas nitroreducens sp. nov., a novel nitrate- and nitrite-reducing species. Int J Syst Evol Microbiol 58:872–876 [CrossRef][PubMed]
    [Google Scholar]
  10. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V. 2009; Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol 59:1290–1296 [CrossRef][PubMed]
    [Google Scholar]
  11. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  13. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  14. Lai Q. L., Shao Z. Z. 2008; Pseudomonas xiamenensis sp. nov., a denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 58:1911–1915 [CrossRef][PubMed]
    [Google Scholar]
  15. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  16. Li H. B., Zhang L. P., Chen S. F. 2008; Halomonas korlensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from saline and alkaline soil. Int J Syst Evol Microbiol 58:2582–2588 [CrossRef][PubMed]
    [Google Scholar]
  17. Liu C., Shao Z. Z. 2005; Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186 [CrossRef][PubMed]
    [Google Scholar]
  18. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. 2004; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [CrossRef][PubMed]
    [Google Scholar]
  19. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  21. Moraine R. A., Rogovin P. 1966; Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8:511–524 [CrossRef]
    [Google Scholar]
  22. Ostle A. G., Holt J. G. 1982; Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44:238–241[PubMed]
    [Google Scholar]
  23. Qu L. Y., Lai Q. L., Zhu F. L., Hong X.G., Shao Z. Z., Sun X. Q. 2011; Cohaesibacter marisflavi sp. nov., a marine bacterium isolated from sediment of a seashore pond for sea cucumber culture. Int J Syst Evol Microbiol 61:762–766 [CrossRef]
    [Google Scholar]
  24. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [CrossRef]
    [Google Scholar]
  25. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E. 2002; Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium . Int J Syst Evol Microbiol 52:1767–1772 [CrossRef]
    [Google Scholar]
  26. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  29. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  30. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  31. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  32. Wang Y. N., Cai H., Chi C. Q., Lu A. H., Lin X. G., Jiang Z. F., Wu X. L. 2007; Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57:1222–1226 [CrossRef][PubMed]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  34. Yoon J. H., Lee K. C., Kho Y. H., Kang K. H., Kim C. J., Park Y. H. 2002; Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52:123–130[PubMed] [CrossRef]
    [Google Scholar]
  35. Zhou X. H., Wang Y., Wu M. 2007; Isolation and exopolysaccharide screening of halophiles from Zhoushan Islands. J Zhejiang Uni 34:335–339
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026344-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026344-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error