1887

Abstract

Two marine bacterial strains, KMM 3823 and KMM 3836, isolated from a sipuncula (), a common inhabitant of Troitsa Bay in the Gulf of Peter the Great (Sea of Japan), were studied. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed these bacteria into a separate branch of the ‘’ within members of the genus . KMM 3823 showed the highest similarity (96·6 %) with . The DNA G+C contents of the two strains studied were 43·0 mol%. The level of DNA homology between these two strains was conspecific (93 %), indicating that they represent a single genospecies. These organisms were greenish-brown, Gram-negative, polarly flagellated, facultatively anaerobic, mesophilic (temperature range 4–30 °C), neutrophilic, haemolytic and were able to degrade elastin, gelatin and DNA. They were susceptible to ampicillin, carbenicillin, gentamicin and kanamycin. The predominant fatty acids were characteristic for shewanellas: 13 : 0-i, 15 : 0-i and 16 : 1(n-7); up to 6·7 % of eicosapentaenoic fatty acid, 20 : 5(n-3), was produced during growth at 28 °C. Phylogenetic evidence, confirmed by DNA hybridization and phenotypic characteristics revealed that the two bacteria studied constitute a new species, sp. nov., the type strain of which is KMM 3823 (=CIP 107701=ATCC BAA-643).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02630-0
2003-09-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531471.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02630-0&mimeType=html&fmt=ahah

References

  1. Barry, A. I. ( 1980; ). Procedures and theoretical considerations for testing antimicrobial agents in agar media. In Antibiotics in Laboratory Medicine, pp. 10–16. Edited by V. Logan. Baltimore: Williams & Wilkins.
  2. Baumann, L., Baumann, P., Mandel, M. & Allen, R. D. ( 1972; ). Taxonomy of aerobic marine eubacteria. J Bacteriol 110, 402–429.
    [Google Scholar]
  3. Berry, V. & Gascuel, O. ( 1996; ). Interpretation of bootstrap trees: threshold of clade selection and induced gain. Mol Biol Evol 13, 999–1011.[CrossRef]
    [Google Scholar]
  4. Bowman, J. P., McCammon, S. A., Nichols, D. S., Skerratt, J. H., Rea, S. M., Nichols, P. D. & McMeekin, T. A. ( 1997; ). Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47, 1040–1047.[CrossRef]
    [Google Scholar]
  5. Ezaki, T., Hashimoto, Y., Takeuchi, N., Yamamoto, H., Liu, S.-L., Miura, H., Matsui, K. & Yabuuchi, E. ( 1988; ). Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol 26, 1708–1713.
    [Google Scholar]
  6. Gascuel, O. ( 1997; ). BIONJ: an improved version of the NJ algorithm based on a simple method of sequence data. Mol Biol Evol 14, 685–695.[CrossRef]
    [Google Scholar]
  7. Gauthier, G., Gauthier, M. & Christen, R. ( 1995; ). Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45, 755–761.[CrossRef]
    [Google Scholar]
  8. Ivanova, E. P., Kiprianova, E. A., Mikhailov, V. V., Levanova, F. G., Garagulya, A. D., Gorshkova, N. M., Yumoto, N. & Yoshikawa, S. ( 1996; ). Characterization and identification of marine Alteromonas nigrifaciens strains and emendation of the description. Int J Syst Bacteriol 46, 223–228.[CrossRef]
    [Google Scholar]
  9. Ivanova, E. P., Sawabe, T., Gorshkova, N. M., Svetashev, V. I., Mikhailov, V. V., Nicolau, D. V. & Christen, R. ( 2001; ). Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51, 1027–1033.[CrossRef]
    [Google Scholar]
  10. Ivanova, E. P., Sawabe, T., Hayashi, K., Gorshkova, N. M., Zhukova, N. V., Nedashkovskaya, O. I., Mikhailov, V. V., Nicolau, D. V. & Christen, R. ( 2003; ). Shewanella fidelis sp. nov., isolated from sediments and sea water. Int J Syst Evol Microbiol 53, 577–582.[CrossRef]
    [Google Scholar]
  11. MacDonell, M. T. & Colwell, R. R. ( 1985; ). Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6, 171–182.[CrossRef]
    [Google Scholar]
  12. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  13. Makemson, J. C., Fulayfil, N. R., Landry, W., Van Ert, L. M., Wimpee, C. F., Widder, E. A. & Case, J. F. ( 1997; ). Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47, 1034–1039.[CrossRef]
    [Google Scholar]
  14. Moule, A. L. & Wilkinson, S. G. ( 1987; ). Polar lipids, fatty acids and isoprenoid quinones of Alteromonas putrefaciens (Shewanella putrefaciens). Syst Appl Microbiol 9, 192–198.[CrossRef]
    [Google Scholar]
  15. Myers, C. R. & Nealson, K. H. ( 1988; ). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321.[CrossRef]
    [Google Scholar]
  16. Nogi, Y., Kato, C. & Horikoshi, K. ( 1998; ). Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170, 331–338.[CrossRef]
    [Google Scholar]
  17. Perrière, G. & Gouy, M. ( 1996; ). WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369.[CrossRef]
    [Google Scholar]
  18. Petrovskis, E. A., Vogel, T. M. & Adriaens, P. ( 1994; ). Effects of electron acceptors and donors on transformation of tetrachloromethane by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 121, 357–364.[CrossRef]
    [Google Scholar]
  19. Russell, N. J. & Nichols, D. S. ( 1999; ). Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145, 767–779.[CrossRef]
    [Google Scholar]
  20. Sawabe, T., Makino, H., Tatsumi, M., Nakano, K., Tajima, K., Iqbal, M. M., Yumoto, I., Ezura, Y. & Christen, R. ( 1998; ). Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is causative agent of red spot disease of Laminaria japonica. Int J Syst Bacteriol 48, 769–774.[CrossRef]
    [Google Scholar]
  21. Semple, K. M. & Westlake, D. W. S. ( 1987; ). Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 35, 925–931.
    [Google Scholar]
  22. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by F. Gerhardt & 11 other editors. Washington, DC: American Society for Microbiology.
  23. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  24. Svetashev, V. I., Vysotskii, M. V., Ivanova, E. P. & Mikhailov, V. V. ( 1995; ). Cellular fatty acid of Alteromonas species. Syst Appl Microbiol 18, 37–43.[CrossRef]
    [Google Scholar]
  25. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  26. Venkateswaran, K., Moser, D. P., Dollhopf, M. E. & 10 other authors ( 1999; ). Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49, 705–724.[CrossRef]
    [Google Scholar]
  27. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  28. Weiner, R. M., Coyne, V. E., Brayton, P., West, P. & Raiken, S. F. ( 1988; ). Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int J Syst Bacteriol 38, 240–244.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02630-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02630-0
Loading

Data & Media loading...

Supplements

Full phylogenetic tree - PDF file

PDF

Table of complete cellular fatty acid data - PDF file

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error