1887

Abstract

A novel, Gram-reaction-positive, aerobic, rod-shaped, non-motile bacterial strain, designated NAL101, was isolated from gajami-sikhae, a traditional Korean fermented seafood made of flatfish. Growth occurred at 4–45 °C, at pH 5–10 and in 0–12 % (w/v) NaCl. Optimum growth occurred at 30–37 °C, at pH 8 and in 0–1 % (w/v) NaCl. The cell-wall amino acids were 2,4-diaminobutyric acid, alanine, glycine, threonine and glutamic acid and the major fatty acids were anteiso-C, iso-C and anteiso-C. The predominant menaquinone was MK-11. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown glycolipid. The 16S rRNA gene sequence of strain NAL101 showed 97.7 % similarity to that of MM2LB, its closest relative. The DNA G+C content was 68.8 mol% and DNA–DNA hybridization values with closely related strains were <22 %. Phylogenetic analyses based on 16S rRNA gene sequences as well as differences in its physiological and biochemical characteristics indicated that strain NAL101 represents a novel species of the genus in the family , for which the name sp. nov. is proposed. The type strain is NAL101 ( = KACC 14220  = JCM 16465).

Funding
This study was supported by the:
  • , TDPAF (Technology Development Program for Agriculture and Forestry) of Korea
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026211-0
2011-10-01
2021-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2353.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026211-0&mimeType=html&fmt=ahah

References

  1. Bae J. W., Rhee S. K., Park J. R., Chung W. H., Nam Y. D., Lee I., Kim H., Park Y. H. 2005; Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol 71:8825–8835 [CrossRef][PubMed]
    [Google Scholar]
  2. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555 [CrossRef][PubMed]
    [Google Scholar]
  3. Bousfield I. J., Keddie R. M., Dando T. R., Shaw S. 1985; Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria. In Chemical Methods in Bacterial Systematics pp. 221–236 London: Academic Press;
    [Google Scholar]
  4. Chang H. W., Nam Y. D., Jung M. Y., Kim K. H., Roh S. W., Kim M. S., Jeon C. O., Yoon J. H., Bae J. W. 2008; Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 75:523–530 [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  10. Halpern M., Shakéd T., Pukall R., Schumann P. 2009; Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 59:665–670 [CrossRef][PubMed]
    [Google Scholar]
  11. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  12. Kim M. S., Roh S. W., Nam Y. D., Chang H. W., Kim K. H., Jung M. J., Choi J. H., Park E. J., Bae J. W. 2009; Alishewanella jeotgali sp. nov., isolated from traditional fermented food, and emended description of the genus Alishewanella . Int J Syst Evol Microbiol 59:2313–2316 [CrossRef][PubMed]
    [Google Scholar]
  13. MIDI 1999 Sherlock Microbial Identification System Operating Manual, version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  14. Morais P. V., Francisco R., Branco R., Chung A. P., da Costa M. S. 2004; Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27:646–652 [CrossRef][PubMed]
    [Google Scholar]
  15. Morais P. V., Paulo C., Francisco R., Branco R., Paula Chung A., da Costa M. S. 2006; Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29:414–421 [CrossRef][PubMed]
    [Google Scholar]
  16. Muir R. E., Tan M. W. 2007; Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens . Int J Syst Evol Microbiol 57:2770–2776 [CrossRef][PubMed]
    [Google Scholar]
  17. Rochelle P. A., Fry J. C., Parkes R. J., Weightman A. J. 1992; DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett 79:59–65[PubMed] [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  19. Somvanshi V. S., Lang E., Schumann P., Pukall R., Kroppenstedt R. M., Ganguly S., Stackebrandt E. 2007; Leucobacter iarius sp. nov., in the family Microbacteriaceae . Int J Syst Evol Microbiol 57:682–686 [CrossRef][PubMed]
    [Google Scholar]
  20. Takeuchi M., Weiss N., Schumann P., Yokota A. 1996; Leucobacter komagatae gen. nov., sp. nov., a new aerobic Gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:967–971 [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  23. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  24. Tittsler R. P., Sandholzer L. A. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580[PubMed]
    [Google Scholar]
  25. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026211-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026211-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error