1887

Abstract

Two Gram-negative, motile, aerobic, catalase- and oxidase-positive, rod-shaped strains, designated ZS5-23 and ZS6-22, were respectively isolated from Antarctic coastal attached (fast) ice and surface seawater samples. Both strains could grow at 4–35 °C (optimum 30 °C) and in the absence of NaCl. Analyses of 16S rRNA gene sequences revealed that strains ZS5-23 and ZS6-22 were closely related to each other (99.0 % sequence similarity) and belonged to the class , with their closest relatives being and species (93.1–94.3 % sequence similarity). The predominant cellular fatty acids in both strains were Cω8, C and summed feature 3 (Cω7 and/or iso-C 2-OH). Genomic DNA G+C contents of strains ZS5-23 and ZS6-22 were 51.5 and 51.8 mol%, respectively. The DNA–DNA relatedness between strains ZS5-23 and ZS6-22 was 50.9 %. Strains ZS5-23 and ZS6-22 could be differentiated from each other and from and species by differences in a number of phenotypic properties. Based on the data presented, strains ZS5-23 and ZS6-22 represent two novel species in a new genus in the class , for which the names gen. nov., sp. nov. (the type species) and sp. nov. are proposed. The type strain of is ZS5-23 ( = KACC 14066  = CCTCC AB 209246) and that of is ZS6-22 ( = KACC 14532  = CCTCC AB 209247).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026153-0
2011-09-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2052.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026153-0&mimeType=html&fmt=ahah

References

  1. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef].[PubMed]
    [Google Scholar]
  2. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef].[PubMed]
    [Google Scholar]
  3. Ekborg N. A. , Gonzalez J. M. , Howard M. B. , Taylor L. E. , Hutcheson S. W. , Weiner R. M. . ( 2005; ). Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. . Int J Syst Evol Microbiol 55:, 1545–1549. [CrossRef].[PubMed]
    [Google Scholar]
  4. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef].[PubMed]
    [Google Scholar]
  5. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Graeber I. , Kaesler I. , Borchert M. S. , Dieckmann R. , Pape T. , Lurz R. , Nielsen P. , von Döhren H. , Michaelis W. , Szewzyk U. . ( 2008; ). Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. . Int J Syst Evol Microbiol 58:, 585–590. [CrossRef].[PubMed]
    [Google Scholar]
  7. Humphry D. R. , Black G. W. , Cummings S. P. . ( 2003; ). Reclassification of ‘Pseudomonas fluorescens subsp. cellulosa' NCIMB 10462 (Ueda et al. 1952) as Cellvibrio japonicus sp. nov. and revival of Cellvibrio vulgaris sp. nov., nom. rev. and Cellvibrio fulvus sp. nov., nom. rev.. Int J Syst Evol Microbiol 53:, 393–400. [CrossRef].[PubMed]
    [Google Scholar]
  8. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192.[CrossRef]
    [Google Scholar]
  9. Hwang C. Y. , Cho B. C. . ( 2009; ). Spongiibacter tropicus sp. nov., isolated from a Synechococcus culture. . Int J Syst Evol Microbiol 59:, 2176–2179. [CrossRef].[PubMed]
    [Google Scholar]
  10. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;.
    [Google Scholar]
  11. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  12. Lee Y. K. , Hong S. G. , Cho H. H. , Cho K. H. , Lee H. K. . ( 2007; ). Dasania marina gen. nov., sp. nov., of the order Pseudomonadales, isolated from Arctic marine sediment. . J Microbiol 45:, 505–509.[PubMed]
    [Google Scholar]
  13. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef].[PubMed]
    [Google Scholar]
  14. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  15. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  16. Schmidt H. A. , Strimmer K. , Vingron M. , von Haeseler A. . ( 2002; ). tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. . Bioinformatics 18:, 502–504. [CrossRef].[PubMed]
    [Google Scholar]
  17. Shieh W. Y. , Lin Y. T. , Jean W. D. . ( 2004; ). Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. . Int J Syst Evol Microbiol 54:, 2307–2312. [CrossRef].[PubMed]
    [Google Scholar]
  18. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  20. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. D , Kämpfer P. , Maiden M. C. J. , Nesme X. , Rosselló-Mora R. , Swings J. et al. ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef].[PubMed]
    [Google Scholar]
  21. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef].[PubMed]
    [Google Scholar]
  22. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed]
    [Google Scholar]
  23. Urios L. , Intertaglia L. , Lesongeur F. , Lebaron P. . ( 2008a; ). Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. . Int J Syst Evol Microbiol 58:, 1233–1237. [CrossRef].[PubMed]
    [Google Scholar]
  24. Urios L. , Agogué H. , Intertaglia L. , Lesongeur F. , Lebaron P. . ( 2008b; ). Melitea salexigens gen. nov., sp. nov., a gammaproteobacterium from the Mediterranean Sea. . Int J Syst Evol Microbiol 58:, 2479–2483. [CrossRef].[PubMed]
    [Google Scholar]
  25. Urios L. , Intertaglia L. , Lesongeur F. , Lebaron P. . ( 2009; ). Haliea rubra sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. . Int J Syst Evol Microbiol 59:, 1188–1192. [CrossRef].[PubMed]
    [Google Scholar]
  26. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026153-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026153-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2052 - 2057

Maximum-parsimony and maximum-likelihood phylogenetic trees based on 16S rRNA gene sequences showing the phylogenetic positions of strains ZS5-23 and ZS6-22 , and species and representatives of related genera. [PDF](42 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error