1887

Abstract

A pure culture of an obligately anaerobic, hydrogenotrophic, methanogenic archaeon, designated strain 169, which grows with hydrogen and carbon dioxide as the sole energy and carbon sources, was isolated from an anaerobic propionate-oxidizing enrichment culture originally obtained as an inoculant from rice-field soil in Japan. Cells of strain 169 were non-motile, Gram-reaction-variable and rod-shaped or slightly curved rods with rounded ends (1.6–5.0×0.35–0.5 µm). Strain 169 had fimbriae at both ends of the cell (up to ~10 per cell) but did not possess flagella. Ultrathin sections showed a single-layered, electron-dense cell wall about 6 nm thick, which is typical of Gram-positive bacteria. Growth was observed at 15 °C–45 °C (optimum 40 °C), at pH  6.5–9.6 (optimum pH 7.5–8.5) and in 0–70 g NaCl l (0–1.2 M) (optimum 5 g NaCl l; 0.086 M). Strain 169 utilized only hydrogen and carbon dioxide as energy and carbon sources. The DNA G+C content was 39.3 mol%. The results of 16S rRNA gene sequence analysis indicated that strain 169 was most closely related to DSM 11074 (96.8 % sequence similarity) and DSM 1535 (96.4 %). On the basis of its morphological, physiological and phylogenetic characteristics, strain 169 ( = DSM 22026 = JCM 15797) represents a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026013-0
2011-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1246.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026013-0&mimeType=html&fmt=ahah

References

  1. Asakawa S., Morii H., Akagawa-Matsushita M., Koga Y., Hayano K. 1993; Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA–DNA hybridization among M. arboriphilicus strains. Int J Syst Bacteriol 43:683–686 [View Article]
    [Google Scholar]
  2. Asakawa S., Akagawa-Matsushita M., Morii H., Koga Y., Hayano K. 1995; Characterization of Methanosarcina mazei TMA isolated from a paddy field soil. Curr Microbiol 31:34–38 [View Article]
    [Google Scholar]
  3. Bartholomew J. W., Mittwer T. 1952; The Gram stain. Bacteriol Rev 16:1–29[PubMed]
    [Google Scholar]
  4. Boone D. R., Whitman W. B., Rouvière P. 1993; Diversity and taxonomy of methanogens. In Methanogenesis. Ecology, Physiology, Biochemistry and Genetics pp. 35–80 Edited by Ferry J. G. New York: Chapman & Hall;
    [Google Scholar]
  5. Bryant M. P., Boone D. R. 1987; Isolation and characterization of Methanobacterium formicicum MF. Int J Syst Bacteriol 37:171 [View Article]
    [Google Scholar]
  6. Cicerone R. J., Oremland R. S. 1988; Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2:299–327 [View Article]
    [Google Scholar]
  7. Conrad R., Bak F., Seitz H. J., Thebrath B., Mayer H. P., Schütz H. 1989a; Hydrogen turnover by psychrophilic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol Ecol 62:285–294 [View Article]
    [Google Scholar]
  8. Conrad R., Mayer H. P., Wüst M. 1989b; Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy soil. FEMS Microbiol Lett 62:265–273 [View Article]
    [Google Scholar]
  9. Dong X., Stams A. J. M. 1995; Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe 1:35–39 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  11. Fetzer S., Bak F., Conrad R. 1993; Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol Ecol 12:107–115 [View Article]
    [Google Scholar]
  12. Galchenko V. F., Lein A., Ivanov M. 1989; Biological sinks of methane. In Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere pp. 59–71 Edited by Andreae M. O., Schimel D. S. Chichester: John Wiley and Sons;
    [Google Scholar]
  13. Garcia J. L. 1990; Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308 [View Article]
    [Google Scholar]
  14. Großkopf R., Janssen P. H., Liesack W. 1998; Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969[PubMed]
    [Google Scholar]
  15. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3:117–132 [View Article]
    [Google Scholar]
  16. Joulian C., Ollivier B., Patel B. K. C., Roger P. A. 1998; Phenotypic and phylogenetic characterization of dominant culturable methanogens isolated from ricefield soils. FEMS Microbiol Ecol 25:135–145 [CrossRef]
    [Google Scholar]
  17. Kellenberger E., Ryter A., Sechaud J. 1958; Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol 4:671–678 [View Article][PubMed]
    [Google Scholar]
  18. Kotelnikova S., Macario A. J. L., Pedersen K. 1998; Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48:357–367[PubMed] [CrossRef]
    [Google Scholar]
  19. Langenberg K. F., Bryant M. P., Wolfe R. S. 1968; Hydrogen-oxidizing methane bacteria. II. Electron microscopy. J Bacteriol 95:1124–1129[PubMed]
    [Google Scholar]
  20. Luton P. E., Wayne J. M., Sharp R. J., Riley P. W. 2002; The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530[PubMed]
    [Google Scholar]
  21. Mah R. A., Smith M. R. 1981; The methanogenic bacteria. In The Prokaryotes vol. 1 pp. 948–977 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer; [CrossRef]
    [Google Scholar]
  22. Nakamura K., Terada T., Sekiguchi Y., Shinzato N., Meng X.-Y., Enoki M., Kamagata Y. 2006; Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae . Appl Environ Microbiol 72:6907–6913 [View Article][PubMed]
    [Google Scholar]
  23. Oyaizu H. S., Hiraishi A. 1999; Molecular phylogenetic evolution. In Microbiology Experiment Methods pp. 234–249 Edited by Sugiyama J. T., Watanabe M., Ohwada K. I., Kuroiwa T. Y., Yakahashi H. O., Tokuda H. Japan: Koudansha Scientific;
    [Google Scholar]
  24. Prinn R. G. 1994; Global atmospheric-biospheric chemistry. In Global atmospheric-biospheric chemistry pp. 1–18 Edited by Prinn R. G. New York: Plenum;
    [Google Scholar]
  25. Raimbault M. 1981; [Inhibition de la formation de méthane par l’acétylène chez Methanosarcina barkeri ]. Cah ORSTOM Ser Biol 43:45–51 (in French)
    [Google Scholar]
  26. Rajagopal B. S., Belay N., Daniels L. 1988; Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Ecol 53:153–158 [View Article]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Sakai S., Imachi H., Hanada S., Ohashi A., Harada H., Kamagata Y. 2008; Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929–936 [View Article][PubMed]
    [Google Scholar]
  29. Schink B. 1992; Syntrophism among prokaryotes. In The Prokaryotes, 2nd edn. pp. 276–299 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  30. Stams A. J. M. 1994; Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66:271–294 [View Article][PubMed]
    [Google Scholar]
  31. Takai Y. 1970; The mechanism of methane fermentation in flooded paddy soil. Soil Sci Plant Nutr 16:238–244 [CrossRef]
    [Google Scholar]
  32. Tamura K., Nei M., Kumar S. 2004; Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  35. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov.. Arch Microbiol 129:395–400 [View Article][PubMed]
    [Google Scholar]
  36. Worakit S., Boone D. R., Mah R. A., Abdel-Samie M.-E., El-Halwagi M. M. 1986; Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 36:380–382 [View Article]
    [Google Scholar]
  37. Zellner G., Bleicher K., Braun E., Kneifel H., Tindall B. J., Conway de Macario E., Winter J. 1989; Characterization of a new mesophilic, secondary alcohol-utilizing methanogen, Methanobacterium palustre spec. nov. from a peat bog. Arch Microbiol 151:1–9 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026013-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026013-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error